967 resultados para Repetitive DNA sequences
Resumo:
A label-free electrochemical detection method for DNA hybridization based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes is reported. Synthetic single-stranded 27-mer oligonucleotides (probe) have been immobilized at 2,5-bis(2-thienyl)-N-(3-phosphorylpropyl)pyrrole film formed by electropolymerization on the previously formed polypyrrole layer. The 27- or 18-mer target oligonucleotides were monitored via the electrochemically driven anion exchange of the inner polypyrrole film. The performance of the miniaturized DNA biosensor system was studied in respect to selectivity, sensitivity, reproducibility, and regeneration of the sensor. Control experiments were performed with a noncomplementary target of 27-mer DNA and 12 base-pair mismatched 18-mer sequences, respectively, and did not show any unspecific binding. Under optimized experimental conditions, the label-free electrochemical biosensor enabled the detection limits of 0.16 and 3.5 fmol for the 18- and 2 7-mer DNA strand, respectively. Furthermore, we demonstrate reusability of the electrochemical DNA biosensor after successful recovery of up to 100% of the original signal by regenerating the DNA label-free electrode with 50 mM HCl at room temperature.
Resumo:
Background: the soil fungus Rhizoctonia solani anastomosis group 3 (AG-3) is an important pathogen of cultivated plants in the family Solanaceae. Isolates of R. solani AG-3 are taxonomically related based on the composition of cellular fatty acids, phylogenetic analysis of nuclear ribosomal DNA (rDNA) and beta-tubulin gene sequences, and somatic hyphal interactions. Despite the close genetic relationship among isolates of R. solani AG-3, field populations from potato and tobacco exhibit comparative differences in their disease biology, dispersal ecology, host specialization, genetic diversity and population structure. However, little information is available on how field populations of R. solani AG-3 on potato and tobacco are shaped by population genetic processes. In this study, two field populations of R. solani AG-3 from potato in North Carolina (NC) and the Northern USA; and two field populations from tobacco in NC and Southern Brazil were examined using sequence analysis of two cloned regions of nuclear DNA (pP42F and pP89).Results: Populations of R. solani AG-3 from potato were genetically diverse with a high frequency of heterozygosity, while limited or no genetic diversity was observed within the highly homozygous tobacco populations from NC and Brazil. Except for one isolate (TBR24), all NC and Brazilian isolates from tobacco shared the same alleles. No alleles were shared between potato and tobacco populations of R. solani AG-3, indicating no gene flow between them. To infer historical events that influenced current geographical patterns observed for populations of R. solani AG-3 from potato, we performed an analysis of molecular variance (AMOVA) and a nested clade analysis (NCA). Population differentiation was detected for locus pP89 (Phi(ST) = 0.257, significant at P < 0.05) but not for locus pP42F (Phi(ST) = 0.034, not significant). Results based on NCA of the pP89 locus suggest that historical restricted gene flow is a plausible explanation for the geographical association of clades. Coalescent-based simulations of genealogical relationships between populations of R. solani AG-3 from potato and tobacco were used to estimate the amount and directionality of historical migration patterns in time, and the ages of mutations of populations. Low rates of historical movement of genes were observed between the potato and tobacco populations of R. solani AG-3.Conclusion: the two sisters populations of the basidiomycete fungus R. solani AG-3 from potato and tobacco represent two genetically distinct and historically divergent lineages that have probably evolved within the range of their particular related Solanaceae hosts as sympatric species.
Resumo:
Sixty-five accessions of the species-rich freshwater red algal order Batrachospermales were characterized through DNA sequencing of two regions: the mitochondrial cox1 gene (664 bp), which is proposed as the DNA barcode for red algae, and the UPA (universal plastid amplicon) marker (370 bp), which has been recently identified as a universally amplifying region of the plastid genome. upgma phenograms of both markers were consistent in their species-level relationships, although levels of sequence divergence were very different. Intraspecific variation of morphologically identified accessions for the cox1 gene ranged from 0 to 67 bp (divergences were highest for the two taxa with the greatest number of accessions; Batrachospermum helminthosum and Batrachospermum macrosporum); while in contrast, the more conserved universal plastid amplicon exhibited much lower intraspecific variation (generally 0-3 bp). Comparisons to previously published mitochondrial cox2-3 spacer sequences for B. helminthosum indicated that the cox1 gene and cox2-3 spacer were characterized by similar levels of sequence divergence, and phylogeographic patterns based on these two markers were consistent. The two taxa represented by the largest numbers of specimens (B. helminthosum and B. macrosporum) have cox1 intraspecific divergence values that are substantially higher than previously reported, but no morphological differences can be discerned at this time among the intraspecific groups revealed in the analyses. DNA barcode data, which are based on a short fragment of an organellar genome, need to be interpreted in conjunction with other taxonomic characters, and additional batrachospermalean taxa need to be analyzed in detail to be able to draw generalities regarding intraspecific variation in this order. Nevertheless, these analyses reveal a number of batrachospermalean taxa worthy of more detailed DNA barcode study, and it is predicted that such research will have a substantial effect on the taxonomy of species within the Batrachospermales in the future.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Quinolones constitute a family of compounds with a potent antibiotic activity. The enzyme DNA gyrase, responsible for the replication and transcription processes in DNA of bacteria, is involved in the mechanism of action of these drugs. In this sense, it is believed that quinolones stabilize the so-called 'cleavable complex' formed by DNA and gyrase, but the whole process is still far from being understood at the molecular level. This information is crucial in order to design new biological active products. As an approach to the problem, we have designed and synthesized low molecular weight peptide mimics of DNA gyrase. These peptides correspond to sequences of the subunit A of the enzyme from Escherichia coli, that include the quinolone resistance-determining region (positions 75-92) and a segment containing the catalytic Tyr-122 (positions 116-130). The peptide mimic of the non-mutated enzyme binds to ciprofloxin (CFX) only when DNA and Mg2+ were present (Kd = 1.6 × 10 -6 m), a result previously found with DNA gyrase. On the other hand, binding was reduced when mutations of Ser-83 to Leu-83 and Asp-87 to Asn-87 were introduced, a double change previously found in the subunit A of DNA gyrase from several CFX-resistant clinical isolates of E. coli. These results suggest that synthetic peptides designed in a similar way to that described here can be used as mimics of gyrases (topoisomerases) in order to study the binding of the quinolone to the enzyme-DNA complex as well as the mechanism of action of these antibiotics. Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Phylogenetio relationships between Eucalyptus species, subgenus Symphyomyrtus (sections Adnataria, Exsertaria, Maldenaria, and Transversaria), and Corymbia species (sections Politaria and Ocharia) were established based on the sequence of Internal transcribed rDNA spacers (ITS1 and ITS2). The species analyzed were obtained from a collection kept in Brazil. Fragments obtained using primers ITS1 and ITS2 were sequenced and part of the sequence of ITS1 and ITS2 and the complete sequence of 5.8S rDNA were used in the analysis. ITSs and 5.8S rDNA sequences from E. globulus ssp. globulus and A. bakeri (Genus Angophora) were downloaded from the Genbank database and included in the analysis. Psidlum guajava was the selected outgroup used. The sequence alignment and a Neighbor-joining tree were obtained using Clustal X. Few variations were detected in the 5.8S rDNA sequences obtained, occurring mainly between Eucalyptus and Corymbia, thus defining these genera. Variations in ITS sequences occurred in all investigated species. Phylogenetic analysis showed a clear separation between the genera Corymbia and Eucalyptus. A bakeri was more closely related to species belonging to genus Corymbia. Regarding the subgenus Symphyomyrtus (Genus Eucalyptus), only species from section Maidenaria grouped together according to their common section. This could have been caused by the removal of natural reproductive barriers when these species were introduced In Brazil, with a consequent Increase in the rate of interspecific crossings and Introgression events.
Resumo:
In the present study, we describe the cloning and characterization of a new SINE-like element from O. niloticus (ROn-2) and show the distribution of this SINE and a previously isolated SINE, ROn-1, in the chromosomes of O. niloticus. The ROn-2 element is 359 base pairs (bp) in length, contains short direct terminal repeats, a tRNA-related region similar to tRNA Val and tRNA Arg, a tRNA-unrelated region, and a poly-A tail. Analysis of the chromosomal distribution of ROn-1 and ROn-2 by fluorescent in situ hybridization showed that both SINE sequences are present in all chromosomes of tilapia, and organized in small clusters. The only exception was a large cluster of ROn-1 repeats found in the middle of the long arm of chromosome 1. In view of our data we discuss the hypothesis that the absence of large clusters of SINE sequences and the structural composition of these sequences may explain the absence of base-specific fluorochrome bands in the chromosomes of tilapia.
Resumo:
The correct identification of all human genes, and their derived transcripts, has not yet been achieved, and it remains one of the major aims of the worldwide genomics community. Computational programs suggest the existence of 30,000 to 40,000 human genes. However, definitive gene identification can only be achieved by experimental approaches. We used two distinct methodologies, one based on the alignment of mouse orthologous sequences to the human genome, and another based on the construction of a high-quality human testis cDNA library, in an attempt to identify new human transcripts within the human genome sequence. We generated 47 complete human transcript sequences, comprising 27 unannotated and 20 annotated sequences. Eight of these transcripts are variants of previously known genes. These transcripts were characterized according to size, number of exons, and chromosomal localization, and a search for protein domains was undertaken based on their putative open reading frames. In silico expression analysis suggests that some of these transcripts are expressed at low levels and in a restricted set of tissues.
Resumo:
Bacterial DNA gyrase, has been identified as the target of several antibacterial agents, including the coumarin drugs. The coumarins inhibit the gyrase action by competitive binding to the ATP-binding site of DNA gyrase B (GyrB) protein. The high in vitro inhibitory potency of coumarins against DNA gyrase reactions has raised interest in studies on coumarin-gyrase interactions. In this context, a series of low-molecular weight peptides, including the coumarin resistance-determining region of subunit B of Escherichia coli gyrase, has been designed and synthesized. The first peptide model was built using the natural fragment 131-146 of GyrB and was able to bind to novobiocin (K a = 1.8 ± 0.2 × 105/M) and ATP (Ka = 1.9 ± 0.4 × 103/M). To build the other sequences, changes in the Arg136 residue were introduced so that the binding to the drug was progressively reduced with the hydrophobicity of this residue (Ka = 1.3 ± 0.1 × 105/M and 1.0 ± 0.2 × 105/M for Ser and His, respectively). No binding was observed for the change Arg136 to Leu. In contrast, the binding to ATP was not altered, independently of the changes promoted. On the contrary, for peptide-coumarin and peptide-ATP complexes, Mg2+ appears to modulate the binding process. Our results demonstrate the crucial role of Arg 136 residue for the stability of coumarin-gyrase complex as well as suggest a different binding site for ATP and in both cases the interactions are mediated by magnesium ions. Copyright Blackwell Munksgaard, 2005.
Resumo:
The phylogenetic relationships of the order Pleuronectiformes are controversial and at some crucial points remain unresolved. To date most phylogenetic studies on this order have been based on morpho-anatomical criteria, whereas only a few sequence comparisons based studies have been reported. In the present study, the phylogenetic relationships of 30 flatfish species pertaining to seven different families were examined by sequence analysis of the first half of the 16S mitochondrial DNA gene. The results obtained did not support percoids as the sister group of pleuronectiforms. The monophyletic origin of most families analyzed, Soleidae, Scophthalmidae, Achiridae, Pleuronectidae and Bothidae, was strongly supported, except for Paralichthyidae which was clearly subdivided into two groups, one of them associated with high confidence to Pleuronectidae. The analysis of the 16S rRNA gene also suggested the monophyly of Pleuronectiforms as the most probable hypothesis and consistently supported some major interfamily groupings.
Resumo:
The accurate specific identification of ticks is essential for the study, control and prevention of tick-borne diseases. Herein, we determined ribosomal nucleotide sequences of the second internal transcribed spacer (ITS2) of 15 Neotropical hard tick species of the genus Amblyomma Koch found in Brazil. Most of the studied ticks accidentally parasite humans and potentially act as vectors of zoonoses. Lengths of the ITS2 sequences ranged from 956 to 1,207 bp, whereas GC content varied from 62.4 to 66.9%. A matrix of ITS2 divergence was calculated with the ITS2 sequence data obtained showing divergence levels varying from 1.5 to 28.8%. The analysis indicated that this molecular marker can be useful for Amblyomma-specific identification. Phylogenetic inferences based on the ITS2 sequences were used to assess some issues in subgenus taxonomy. © 2007 Entomological Society of America.
Resumo:
Nuclear mitochondrial-like sequences (numts) are copies of mitochondrial DNA that have migrated to the genomic DNA. We present the first characterization of numts in ants, these numts being homologues to a mitochondrial DNA fragment containing loci the 3′ portion of the cytochrome oxidase I gene, an intergenic spacer, the tRNA leucine gene and the 5′ portion of the cytochrome oxidase II gene. All 67 specimens of Atta cephalotes (Hymenoptera: Formicidae: Attini) investigated had these homologues, which are within two monophyletic groups that we called numt1 and numt2. Numt1 and numt2 sequences are less variable than mitochondrial sequences and released from the severe purifying selection constraining the evolution of mitochondrial genes. Their formation probably involved bottlenecks related to two distinct transfer events of ancient and fast evolving mitochondrial DNA fragments to comparative slowly evolving nuclear DNA regions. © 2007 The Authors.
Resumo:
Molossidae species, Cynomops abrasus (2n = 34, fundamental number, FN = 64), Eumops auripendulus (2n = 42, FN = 62), Molossus rufus (2n = 48, FN = 64), Molossops temminckii (2n = 48, FN = 64), and Nyctinomops laticaudatus (2n = 48, FN = 64), and Phyllostomidae species, Phyllostomus discolor (2n = 32, FN = 60), have karyotypes with different chromosome and fundamental numbers, different localization of constitutive heterochromatin, and different numbers and location of nucleolar organizer regions (NORs). Fluorescence in situ hybridization with a human probe of the telomeric sequence (TTAGGG)n produced fluorescent signals in telomeric regions of the six bat species' chromosomes; in E. auripendulus, pericentromeric signals were also observed in the acrocentric and subtelocentric chromosomes. A relationship between telomeric sequences and NORs, and between telomeric sequences and constitutive heterochromatin was detected in chromosomes bearing NORs in C. abrasus, M. temminckii, N. laticaudatus, and P. discolor. No interstitial signal was observed in the meta- or submetacentric chromosomes of these species. ©FUNPEC-RP.
Resumo:
Background. From shotgun libraries used for the genomic sequencing of the phytopathogenic bacterium Xanthomonas axonopodis pv. citri (XAC), clones that were representative of the largest possible number of coding sequences (CDSs) were selected to create a DNA microarray platform on glass slides (XACarray). The creation of the XACarray allowed for the establishment of a tool that is capable of providing data for the analysis of global genome expression in this organism. Findings. The inserts from the selected clones were amplified by PCR with the universal oligonucleotide primers M13R and M13F. The obtained products were purified and fixed in duplicate on glass slides specific for use in DNA microarrays. The number of spots on the microarray totaled 6,144 and included 768 positive controls and 624 negative controls per slide. Validation of the platform was performed through hybridization of total DNA probes from XAC labeled with different fluorophores, Cy3 and Cy5. In this validation assay, 86% of all PCR products fixed on the glass slides were confirmed to present a hybridization signal greater than twice the standard deviation of the deviation of the global median signal-to-noise ration. Conclusions. Our validation of the XACArray platform using DNA-DNA hybridization revealed that it can be used to evaluate the expression of 2,365 individual CDSs from all major functional categories, which corresponds to 52.7% of the annotated CDSs of the XAC genome. As a proof of concept, we used this platform in a previously work to verify the absence of genomic regions that could not be detected by sequencing in related strains of Xanthomonas. © 2010 Moreira et al; licensee BioMed Central Ltd.