888 resultados para Refrigerated installation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Producing cost-competitive small and medium-sized solar cooling systems is currently a significant challenge. Due to system complexity, extensive engineering, design and equipment costs; the installation costs of solar thermal cooling systems are prohibitively high. In efforts to overcome these limitations, a novel sorption heat pump module has been developed and directly integrated into a solar thermal collector. The module comprises a fully encapsulated sorption tube containing hygroscopic salt sorbent and water as a refrigerant, sealed under vacuum with no moving parts. A 5.6m2 aperture area outdoor laboratory-scale system of sorption module integrated solar collectors was installed in Stockholm, Sweden and evaluated under constant re-cooling and chilled fluid return temperatures in order to assess collector performance. Measured average solar cooling COP was 0.19 with average cooling powers between 120 and 200 Wm-2 collector aperture area. It was observed that average collector cooling power is constant at daily insolation levels above 3.6 kWhm-2 with the cooling energy produced being proportional to solar insolation. For full evaluation of an integrated sorption collector solar heating and cooling system, under the umbrella of a European Union project for technological innovation, a 180 m2 large-scale demonstration system has been installed in Karlstad, Sweden. Results from the installation commissioned in summer 2014 with non-optimised control strategies showed average electrical COP of 10.6 and average cooling powers between 140 and 250 Wm-2 collector aperture area. Optimisation of control strategies, heat transfer fluid flows through the collectors and electrical COP will be carried out in autumn 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exploiting solar energy technology for both heating and cooling purposes has the potential of meeting an appreciable portion of the energy demand in buildings throughout the year. By developing an integrated, multi-purpose solar energy system, that can operate all twelve months of the year, a high utilisation factor can be achieved which translates to more economical systems. However, there are still some techno-economic barriers to the general commercialisation and market penetration of such technologies. These are associated with high system and installation costs, significant system complexity, and lack of knowledge of system implementation and expected performance. A sorption heat pump module that can be integrated directly into a solar thermal collector has thus been developed in order to tackle the aforementioned market barriers. This has been designed for the development of cost-effective pre-engineered solar energy system kits that can provide both heating and cooling. This thesis summarises the characterisation studies of the operation of individual sorption modules, sorption module integrated solar collectors and a full solar heating and cooling system employing sorption module integrated collectors. Key performance indicators for the individual sorption modules showed cooling delivery for 6 hours at an average power of 40 W and a temperature lift of 21°C. Upon integration of the sorption modules into a solar collector, measured solar radiation energy to cooling energy conversion efficiencies (solar cooling COP) were between 0.10 and 0.25 with average cooling powers between 90 and 200 W/m2 collector aperture area. Further investigations of the sorption module integrated collectors implementation in a full solar heating and cooling system yielded electrical cooling COP ranging from 1.7 to 12.6 with an average of 10.6 for the test period. Additionally, simulations were performed to determine system energy and cost saving potential for various system sizes over a full year of operation for a 140 m2 single-family dwelling located in Madrid, Spain. Simulations yielded an annual solar fraction of 42% and potential cost savings of €386 per annum for a solar heating and cooling installation employing 20m2 of sorption integrated collectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.