950 resultados para Reflection high energy electron diffraction
Resumo:
Magnetism and magnetic materials have been an ever-attractive subject area for engineers and scientists alike because of its versatility in finding applications in useful devices. They find applications in a host of devices ranging from rudimentary devices like loud speakers to sophisticated gadgets like waveguides and Magnetic Random Access Memories (MRAM).The one and only material in the realm of magnetism that has been at the centre stage of applications is ferrites and in that spinel ferrites received the lions share as far as practical applications are concerned.It has been the endeavour of scientists and engineers to remove obsolescence and improve upon the existing so as to save energy and integrate in to various other systems. This has been the hallmark of material scientists and this has led to new materials and new technologies.In the field of ferrites too there has been considerable interest to devise new materials based on iron oxides and other compounds. This means synthesising ultra fine particles and tuning its properties to device new materials. There are various preparation techniques ranging from top- down to bottom-up approaches. This includes synthesising at molecular level, self assembling,gas based condensation. Iow temperature eo-precipitation, solgel process and high energy ball milling. Among these methods sol-gel process allows good control of the properties of ceramic materials. The advantage of this method includes processing at low temperature. mixing at the molecular level and fabrication of novel materials for various devices.Composites are materials. which combine the good qualities of one or more components. They can be prepared in situ or by mechanical means by the incorporation of fine particles in appropriate matrixes. The size of the magnetic powders as well as the nature of matrix affect the processability and other physical properties of the final product. These plastic/rubber magnets can in turn be useful for various applications in different devices. In applications involving ferrites at high frequencies, it is essential that the material possesses an appropriate dielectric permittivity and suitable magnetic permeability. This can be achieved by synthesizing rubber ferrite composites (RFC's). RFCs are very useful materials for microwave absorptions. Hence the synthesis of ferrites in the nanoregirne.investigations on their size effects on the structural, magnetic, and electrical properties and the incorporation of these ferrites into polymer matrixes assume significance.In the present study, nano particles of NiFe204, Li(!5Fe2S04 and Col-e-O, are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFel04 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X - band are also conducted.
Resumo:
The CH local mode overtone spectrum of benzyl chloride in the visible and NIR regions studied by laser induced thermal lens and conventional NIR absorption is presented. The analysis shows that the −CH2Cl group is symmetrically oriented with respect to the benzene ring, thus finalizing one of the two possible conformational models predicted by electron diffraction studies. The aryl CH bonds have a slightly larger force constant than that in benzene.
Resumo:
With a seacoast of 8,1 18 km, an exclusive economic zone (EEZ) of 2 million square km, and with an area of about 30,000 square km under aquaculture, lndia produces close to six million tonnes of fish, over 4 per cent of the world fish production. While the marine waters upto 50m depth have been fully exploited, those beyond, remain unexplored. There is an ever increasing demand for fishery resources as food. The coastal fishery resources of the country are dwindling at a rapid pace and it becomes highly imperative that we search for alternate fishery resources for food. The option we have is to hunt for marine fishery resources. Studies pertaining to proximate composition, amino acid and fatty acid composition are essential to understand the nutraceutical values of these deep sea fishery resources. The present study was aimed to carry out proximate composition of deep sea fishery resources obtained during cruises onboard the FORV Sarise Sampada, to identify fishery resources which have appreciable lipid content and thereby analyse the bioactive potentials of marine lipids, to study the amino acid profile of these fishery resources, to understand the contents of SPA, MUFA and PUFA and to calculate the n3/n6 fatty acid contents. Though the presence of nutraceuticals was identified in the marine fishery resources their use as potential food resources deserve further investigation. So the study were carried out to calculate the hepatosomatic indices of sharks & chimaeras and conduct biochemical characterisation of liver oils of Apristurus indicus, Cenlrophorus scalprams, Centroselachus crepidater, Neoharriotta raleighana, and Harriotta pinnata obtained during cruises onboard the FORV Sugar Sampada.Therapeutic use of shark liver oil is evident from its use for centuries as a remedy to heal wounds and fight flu (Neil er al. 2006). Japanese seamen called it 'samedava' or "cure all". Shark liver oil is being promoted worldwide as a dietary supplement to boost the immune system, fight infections, to treat cancer and to lessen the side effects of conventional cancer treatment. These days more emphasis is laid on the nutritive benefits of shark liver oils especially on the omega 3 polyunsaturated fatty acids ( PUFAs) (Anandan er al. 2007) and alkylglycerols (AKGs) (Pugliese er al. I998) contained in them due to the high rise of inflammatory disorders such as arthritis, asthma and neurodegenerative diseases like Alzheimer’s, Parkinson’s and Schizophrenia. So the present study also evaluate the pharmacological properties with respect to analgesic, anti-inflammatory, anti pyretic and anti-ulcer effects of four different liver oils of sharks belonging to the Indian EEZ and to identify the components of oil responsible for these activities.The analgesic and anti-inflammatory activities of liver oils from Neoharriotra raleighana (NR), Centrosymnus crepidater (CC), Apristurus indicus (AI), and Centrophorus sculpratus (CS) sharks caught from the Arabian Sea and the Indian Ocean were compared. The main objectives also include determination of the cholesterol lowering effects of liver oils of Neoharriotra raleighana (NR) and Centrophorus sculpratus (CS) on the high fat diet induced dyslipidemia and to compare the impact of four isolipidemic diets, on levels of serum diagnostic marker enzymes, on lipid profile of blood and liver and antioxidant status of heart in male Albino rats. And also to study the efficacy of Centrophorus sculpratus (CS) liver oil against Complete Freund’s Adjuvant-induced arthritis and to compare the anti-inflammatory activity of this oil with a traditionally used anti-inflammatory substance gingerol (oleoresin extracted from ginger.). The results of the present study indicated that both (Centrophorus sculpratus liver oils as well as gingerol extracts proved to be effective natural remedies against CFA-induced arthritis in Albino rats.
Resumo:
The continental shelf of southwest coast of India (Kerala) is broader and . flatter compared to that of the east coast. The unique characteristic feature of the study area (innershelf between Narakkal and Purakkad) is the intermittent appearance of 'mud banks' at certain locations during southwest monsoon. The strong seasonality manifests significant changes in the wind, waves, currents, rainfall, drainage etc., along this area. Peculiar geomorphological variation with high, mid and lowlands in the narrow strip of the hinterland, the geological formations mainly consisting of rocks of metamorphic origin and the humid tropical weathering conditions play significant role in regulating the shelf sedimentation. A complementary pattern of distri bution is observed for clay that shows an abundance in the nearshore. Silt, to a major extent, depicts semblance with clay distribution . Summation of the total asymmetry of grain size distribution are inferred from the variation of skewness and kurtosis.Factor I implies a low energy regime where the transportation and deposition phases are controlled mostly by pelagic suspension process as the factor loadings are dominant on finer phi sizes. The second Factor is inferred to be the result of a high energy regime which gives higher loadings on coarser size fractions. The third Factor which might be a transition phase (medium energy regime) representing the resultant flux of coastal circulation of the re-suspension/deposition and an onshoreoffshore advection by reworking and co-deposition of relict and modern sediments. The spatial variations of the energy regime based on the three end-member factor model exhibits high energy zone in the seaward portion transcending to a low energy one towards the coast.From the combined analysis of granulometry and SEM studies, it is concluded that the sandy patches beyond 20 m depth are of relict nature. They are the resultant responses of beach activity during the lower stand of sea level in the Holocene. Re-crystallisation features on the quartz grains indicate that they were exposed to subaerial weathering process subsequent to thei r deposition
Resumo:
Light emitting polymers (LEP) have drawn considerable attention because of their numerous potential applications in the field of optoelectronic devices. Till date, a large number of organic molecules and polymers have been designed and devices fabricated based on these materials. Optoelectronic devices like polymer light emitting diodes (PLED) have attracted wide-spread research attention owing to their superior properties like flexibility, lower operational power, colour tunability and possibility of obtaining large area coatings. PLEDs can be utilized for the fabrication of flat panel displays and as replacements for incandescent lamps. The internal efficiency of the LEDs mainly depends on the electroluminescent efficiency of the emissive polymer such as quantum efficiency, luminance-voltage profile of LED and the balanced injection of electrons and holes. Poly (p-phenylenevinylene) (PPV) and regio-regular polythiophenes are interesting electro-active polymers which exhibit good electrical conductivity, electroluminescent activity and high film-forming properties. A combination of Red, Green and Blue emitting polymers is necessary for the generation of white light which can replace the high energy consuming incandescent lamps. Most of these polymers show very low solubility, stability and poor mechanical properties. Many of these light emitting polymers are based on conjugated extended chains of alternating phenyl and vinyl units. The intra-chain or inter-chain interactions within these polymer chains can change the emitted colour. Therefore an effective way of synthesizing polymers with reduced π-stacking, high solubility, high thermal stability and high light-emitting efficiency is still a challenge for chemists. New copolymers have to be effectively designed so as to solve these issues. Hence, in the present work, the suitability of a few novel copolymers with very high thermal stability, excellent solubility, intense light emission (blue, cyan and green) and high glass transition temperatures have been investigated to be used as emissive layers for polymer light emitting diodes.
Resumo:
Laser-induced damage is the principal limiting constraint in the design and operation of high-power laser systems used in fusion and other high-energy laser applications. Therefore, an understanding of the mechanisms which cause the radiation damage to the components employed in building a laser and a knowledge of the damage threshold of these materials are of great importance in designing a laser system and to operate it without appreciable degradation in performance. This thesis, even though covers three distinct problems for investigations using a dye Q-switched multimode Nd:glass laser operating at 1062 nm and emitting 25 ns (FWHM) pulses, lays its main thrust on damage threshold studies on thin films. Using the same glass laser two-photon excited fluorescence in rhodamine 6G and generation and characterisation of a carbon plasma have also been carried out. The thesis is presented in seven chapters.
Resumo:
High energy materials are essential ingredients in both rocket and explosive formulations. These can be vulnerable due to maltreatment. During gulf war, several catastrophic accidents have been reported from their own payload munitions. The role of energetic binders here was to wrap the explosive formulations to convert it into insensitive munitions. With the aid of energetic binders, the explosive charges are not only protected from tragic accidents due to fire, bullet impact, adjacent detonation, unplanned transportation, but also form total energy output presumption. The use of energetic binders in rocket propellants and explosive charges has been increased after the Second World War. Inert binders in combination with energetic materials, performed well as binders but they diluted the final formulation. Obviously the total energy output was reduced. Currently, the research in the field of energetic polymers is an emerging area, since it plays crucial role in insensitive munitions. The present work emphasises on the synthesis and characterization of oxetanes, oxiranes and polyphosphazene based energetic polymers. The thesis is structured into six chapters. First part of chapter 1 deals with brief history of energetic polymers. The second part describes a brief literature survey of energetic polymers based on oxetanes and oxiranes. Third and fourth parts deal with energetic plasticizers and energetic polyphosphazenes. Finally, the fifth part deals with the various characterization techniques adopted for the current study and sixth part includes objectives of the present work.
Resumo:
High-sensitivity electron paramagnetic resonance experiments have been carried out in fresh and stressed Mn12 acetate single crystals for frequencies ranging from 40 GHz up to 110 GHz. The high number of crystal dislocations formed in the stressing process introduces a E(Sx2-Sy2) transverse anisotropy term in the spin Hamiltonian. From the behavior of the resonant absorptions on the applied transverse magnetic field we have obtained an average value for E=22 mK, corresponding to a concentration of dislocations per unit cell of c=10-3.
Resumo:
Laser-induced damage is the principal limiting constraint in the design and operation of high-power laser systems used in fusion and other high-energy laser applications. Therefore, an understanding of the mechanisms which cause the radiation damage to the components employed in building a laser and a knowledge of the damage threshold of these materials are of great importance in designing a laser system and to operate it without appreciable degradation in performance. This thesis, even though covers three distinct problems for investigations using a dye Q-switched multimode Nd:glass laser operating at 1062 nm and emitting 25 ns (FWHM) pulses, lays its main thrust on damage threshold studies on thin films. Using the same glass laser two-photon excited fluorescence in rhodamine 6G and generation and characterisation of a carbon plasma have also been carried out.
Resumo:
Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT–SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at ∼110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT–SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT–SPION composite can be envisaged as a good agent for various biomedical applications
Resumo:
Nanoparticles are of immense importance both from the fundamental and application points of view. They exhibit quantum size effects which are manifested in their improved magnetic and electric properties. Mechanical attrition by high energy ball milling (HEBM) is a top down process for producing fine particles. However, fineness is associated with high surface area and hence is prone to oxidation which has a detrimental effect on the useful properties of these materials. Passivation of nanoparticles is known to inhibit surface oxidation. At the same time, coating polymer film on inorganic materials modifies the surface properties drastically. In this work a modified set-up consisting of an RF plasma polymerization technique is employed to coat a thin layer of a polymer film on Fe nanoparticles produced by HEBM. Ball-milled particles having different particle size ranges are coated with polyaniline. Their electrical properties are investigated by measuring the dc conductivity in the temperature range 10–300 K. The low temperature dc conductivity (I–V ) exhibited nonlinearity. This nonlinearity observed is explained on the basis of the critical path model. There is clear-cut evidence for the occurrence of intergranular tunnelling. The results are presented here in this paper
Resumo:
Ultrafast laser pulses have become an integral part of the toolbox of countless laboratories doing physics, chemistry, and biological research. The work presented here is motivated by a section in the ever-growing, interdisciplinary research towards understanding the fundamental workings of light-matter interactions. Specifically, attosecond pulses can be useful tools to obtain the desired insight. However access to, and the utility of, such pulses is dependent on the generation of intense, few-cycle, carrier-envelope-phase stabilized laser pulses. The presented work can be thought of as a sort of roadmap towards the latter. From the oscillator which provides the broadband seed to amplification methods, the integral pieces necessary for the generation of attosecond pulses are discussed. A range of topics from the fundamentals to design challenges is presented, outfitting the way towards the practical implementation of an intense few-cycle carrier-envelope-phase stabilized laser source.
Resumo:
Tunable Optical Sensor Arrays (TOSA) based on Fabry-Pérot (FP) filters, for high quality spectroscopic applications in the visible and near infrared spectral range are investigated within this work. The optical performance of the FP filters is improved by using ion beam sputtered niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) Distributed Bragg Reflectors (DBRs) as mirrors. Due to their high refractive index contrast, only a few alternating pairs of Nb2O5 and SiO2 films can achieve DBRs with high reflectivity in a wide spectral range, while ion beam sputter deposition (IBSD) is utilized due to its ability to produce films with high optical purity. However, IBSD films are highly stressed; resulting in stress induced mirror curvature and suspension bending in the free standing filter suspensions of the MEMS (Micro-Electro-Mechanical Systems) FP filters. Stress induced mirror curvature results in filter transmission line degradation, while suspension bending results in high required filter tuning voltages. Moreover, stress induced suspension bending results in higher order mode filter operation which in turn degrades the optical resolution of the filter. Therefore, the deposition process is optimized to achieve both near zero absorption and low residual stress. High energy ion bombardment during film deposition is utilized to reduce the film density, and hence the film compressive stress. Utilizing this technique, the compressive stress of Nb2O5 is reduced by ~43%, while that for SiO2 is reduced by ~40%. Filters fabricated with stress reduced films show curvatures as low as 100 nm for 70 μm mirrors. To reduce the stress induced bending in the free standing filter suspensions, a stress optimized multi-layer suspension design is presented; with a tensile stressed metal sandwiched between two compressively stressed films. The stress in Physical Vapor Deposited (PVD) metals is therefore characterized for use as filter top-electrode and stress compensating layer. Surface micromachining is used to fabricate tunable FP filters in the visible spectral range using the above mentioned design. The upward bending of the suspensions is reduced from several micrometers to less than 100 nm and 250 nm for two different suspension layer combinations. Mechanical tuning of up to 188 nm is obtained by applying 40 V of actuation voltage. Alternatively, a filter line with transmission of 65.5%, Full Width at Half Maximum (FWHM) of 10.5 nm and a stopband of 170 nm (at an output wavelength of 594 nm) is achieved. Numerical model simulations are also performed to study the validity of the stress optimized suspension design for the near infrared spectral range, wherein membrane displacement and suspension deformation due to material residual stress is studied. Two bandpass filter designs based on quarter-wave and non-quarter-wave layers are presented as integral components of the TOSA. With a filter passband of 135 nm and a broad stopband of over 650 nm, high average filter transmission of 88% is achieved inside the passband, while maximum filter transmission of less than 1.6% outside the passband is achieved.
Resumo:
Los traumatismos por accidentes de tránsito, constituyen un problema de salud pública, a nivel mundial. Las lesiones más frecuentes son las fracturas de extremidades (84.3%). Las fracturas tienen un elevado riesgo de presentar infecciones, secuelas e incapacidades permanentes. Objetivo : Determinar si los factores asociados con la patología (lugar de fractura, clasificación de fractura, comorbilidades del paciente) y/o los factores relacionados con la atención médica (uso de profilaxis antibiótica diferente al protocolo institucional, tiempo prolongado para remisión, demoras en manejo quirúrgico) se asocian a mayor probabilidad de presentar infección de fracturas abiertas, en población mayor a 15 años, atendidos por accidente de tránsito, en una clínica de Bogotá de tercer nivel especializada en atención de SOAT, durante el período Octubre de 2012 a Octubre de 2013. Metodología: Estudio de casos y controles no apareado, relación 1:3, conformado por 43 casos (fracturas abiertas infectadas) y 129 controles (fracturas abiertas no infectadas). Resultados: La edad media de los casos fue de 39.42 +/- 16.82 años (med=36 años) y la edad media de los controles fue de 33.15 +/- 11.78 años (med=30 años). El 83.7% de los casos y el 78.3% de los controles corresponden al sexo masculino. Predominaron los accidentes en motocicleta en el 81.4% de los casos y el 86% de los controles. En el análisis bivariado se encuentra que la edad mayor a 50 años (p=0.042), una clasificación de la fractura grado IIIB o IIIC (p=0.02), cumplimiento del protocolo antibiótico institucional según el grado de fractura (p=0.014) y un tiempo mayor a 24 horas desde el momento del accidente al centro especializado en trauma (p=0.035) se asociaron significativamente con infección de la fractura abierta. En el análisis multivariado se encuentra únicamente que la clasificación de la fractura grado IIIB o IIIC se asocia con infección de la fractura OR 2.6 IC95% (1.187 – 5.781) (p=0.017). La duración de hospitalización fue mayor en los casos (32.37+/- 22.92 días, med=26 días) que en los controles (8.81 +/- 7.52 días, med=6 días) (p<0.001). El promedio de lavados quirúrgicos fue mayor en los casos (4.85±4.1, med=4.0) que en el grupo control (1.94±1.26, med=2) (p<0.001). Conclusiones: La infección posterior a una fractura abierta, implica costos elevados de atención con hospitalizaciones prolongadas y mayor frecuencia de intervenciones quirúrgicas como se evidencia en el presente estudio. Se debe fortalecer el sistema de remisión y contra remisión para acortar los tiempos de inicio de manejo especializado de los pacientes con fracturas abiertas. Se debe incentivar dentro de las instituciones, el cumplimiento de protocolos de profilaxis antibiótica según el grado de la fractura para disminuir el riesgo de complicación infecciosa.