991 resultados para Red dry wine
Resumo:
A red rain phenomenon occurred in Kerala, India starting from 25th July 2001, in which the rainwater appeared coloured in various localized places that are spread over a few hundred kilometers in Kerala. Maximum cases were reported during the first 10 days and isolated cases were found to occur for about 2 months. The striking red colouration of the rainwater was found to be due to the suspension of microscopic red particles having the appearance of biological cells. These particles have no similarity with usual desert dust. An estimated minimum quantity of 50,000 kg of red particles has fallen from the sky through red rain. An analysis of this strange phenomenon further shows that the conventional atmospheric transport processes like dust storms etc. cannot explain this phenomenon. The electron microscopic study of the red particles shows fine cell structure indicat- ing their biological cell like nature. EDAX analysis shows that the major elements present in these cell like particles are carbon and oxygen. Strangely, a test for DNA using Ethidium Bromide dye fluorescence technique indicates absence of DNA in these cells. In the context of a suspected link between a meteor airburst event and the red rain, the possibility for the extraterrestrial origin of these particles from cometary fragments is discussed.
Resumo:
Hevea latex is a natural biological liquid of very complex composition .Besides rubber hydrocarbons,it contains many proteinous and resinous substances,carbohydrates,inorganic matter,water,and others.The Dry Rubber Content (DRC) of latex varies according to season, tapping system,weather,soil conditions ,clone,age of the tree etc. The true DRC of the latex must be determined to ensure fair prices for the latex during commercial exchange.The DRC of Hevea latex is a very familiar term to all in the rubber industry.It has been the basis for incentive payments to tappers who bring in more than the daily agreed poundage of latex.It is an important parameter for rubber and latex processing industries for automation and verious decesion making processes.This thesis embodies the efforts made by me to determine the DRC of rubber latex following different analytical tools such as MIR absorption,thermal analysis.dielectric spectroscopy and NIR reflectance.The rubber industry is still Looking for a compact instrument that is accurate economical,easy to use and environment friendly.I hope the results presented in this thesis will help to realise this goal in the near future.
Resumo:
The family Cyprinidae is the largest of freshwater fishes and, with the possible exception of Gobiidae, the largest family of vertebrates.Various members of this family are important as food fish, as aquarium fish, and in biological research. In this study, a fish species from this family exclusively found in the west flowing rivers originating from the Western Ghat region — Gonoproktopterus curmuca — was taken for population genetic analysis.There was an urgent need for restoration ecology by the development of apt management strategies to exploit resources judiciously. One of the strategies thus developed for the scientific management of these resources was to identify the natural units of the fishery resources under exploitation (Altukov, 1981). These natural units of a species can otherwise be called as stocks. A stock can be defined as a panmictic population of related individuals within a single species that is genetically distinct from other such populations.It is believed that a species may undergo micro evolutionary process and differentiate into genetically distinct sub-populations or stocks in course of time, if reproductively and geographically isolated.In recent times, there has been a wide spread degradation of natural aquatic environment due to anthropogenic activities and this has resulted in the decline and even extinction of some fish species. In such situations, evaluation of the genetic diversity of fish resources assumes important to conservation.The species selected for the study, was short-listed as one of the candidates for stock-specific, propagation assisted rehabilitation and management programme in rivers where it is naturally distributed. In connection with this, captive breeding and milt cryopreservation techniques of the species have been developed by the National Bureau of Fish Genetic Resources, Lucknow. However, for a scientific stock-specific rehabilitation programme, information on the stock structure and basic genetic profile of the species are essential and that is not available in case of G. curmuca. So the present work was taken up to identify molecular genetic markers like allozymes, microsatellites and RAPDs and, to use these markers to discriminate the distinct populations of the species, if any, in areas of its natural distribution. The genetic markers were found to be powerful tools to analyze the population genetic structure of the red-tailed barb and demonstrated clear cut genetic differentiation between pairs of populations examined. Geographic isolation by land distance is likely to be the factor that contributed to the restricted gene flow between the river systems. So the present study emphasizes the need for stock-wise, propagation assisted-rehabilitation of the natural populations of red-tailed barb, Gonoprokfopterus curmuca.
Resumo:
Light emitting polymers (LEPs) are considered as the second generation of conducting polymers. A Prototype LEP device based on electroluminescence emission of poly(p-phenylenevinylene) (PPV) was first assembled in 1990. LEPs have progressed tremendously over the past 20 years. The development of new LEP derivatives are important because polymer light emitting diodes (PLEDs) can be used for the manufacture of next-generation displays and other optoelectronic applications such as lasers, photovoltaic cells and sensors. Under this circumstance, it is important to understand thermal, structural, morphological, electrochemical and photophysical characteristics of luminescent polymers. In this thesis the author synthesizes a series of light emitting polymers that can emit three primary colors (RGB) with high efficiency
Resumo:
Researches are always in quest for finding innovative methods for ground improvement using sustainable and environmental friendly solutions. Theproduction of large quantity of biowastes all over the world faces serious problems of handling and disposal. Coir pith is a biowaste from coir industry and sugarcane baggase is another biowaste obtained after extractingjuice from sugar cane. So the present study is an investigation into the effect of coir pith and sugarcane baggase on some geotechnical properties of red earth. The investigation includes study on variation of properties such as O.M.C, maximum dry density, C.B.R. values,unconfined compressive strength and permeability when these materials are included in soil. Several conclusions are arrived at, on the basis of the experiments conducted and it may be helpful for predicting the behavior of such soil matrix
Resumo:
Nano magnetic oxides are promising candidates for high density magnetic storage and other applications. Nonspherical mesoscopic iron oxide particles are also candidate materials for studying the shape, size and strain induced modifications of various physical properties viz. optical, magnetic and structural. Spherical and nonspherical iron oxides having an aspect ratio, ~2, are synthesized by employing starch and ethylene glycol and starch and water, respectively by a novel technique. Their optical, structural, thermal and magnetic properties are evaluated. A red shift of 0⋅24 eV is observed in the case of nonspherical particles when compared to spherical ones. The red shift is attributed to strain induced changes in internal pressure inside the elongated iron oxide particles. Pressure induced effects are due to the increased overlap of wave functions. Magnetic measurements reveal that particles are superparamagnetic. The marked increase in coercivity in the case of elongated particles is a clear evidence for shape induced anisotropy. The decreased specific saturation magnetization of the samples is explained on the basis of weight percentage of starch, a nonmagnetic component and is verified by TGA and FTIR studies. This technique can be modified for tailoring the aspect ratio and these particles are promising candidates for drug delivery and contrast enhancement agents in magnetic resonance imaging
Resumo:
Cochin University of Science & Technology
Resumo:
Solid waste generation is a natural consequence of human activity and is increasing along with population growth, urbanization and industrialization. Improper disposal of the huge amount of solid waste seriously affects the environment and contributes to climate change by the release of greenhouse gases. Practicing anaerobic digestion (AD) for the organic fraction of municipal solid waste (OFMSW) can reduce emissions to environment and thereby alleviate the environmental problems together with production of biogas, an energy source, and digestate, a soil amendment. The amenability of substrate for biogasification varies from substrate to substrate and different environmental and operating conditions such as pH, temperature, type and quality of substrate, mixing, retention time etc. Therefore, the purpose of this research work is to develop feasible semi-dry anaerobic digestion process for the treatment of OFMSW from Kerala, India for potential energy recovery and sustainable waste management. This study was carried out in three phases in order to reach the research purpose. In the first phase, batch study of anaerobic digestion of OFMSW was carried out for 100 days at 32°C (mesophilic digestion) for varying substrate concentrations. The aim of this study was to obtain the optimal conditions for biogas production using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The optimum conditions for maximizing the biogas yield were a substrate concentration of 99 g/l, an initial pH of 6.5 and TOC of 20.32 g/l. AD of OFMSW with optimized substrate concentration of 99 g/l [Total Solid (TS)-10.5%] is a semi-dry digestion system .Under the optimized condition, the maximum biogas yield was 53.4 L/kg VS (volatile solid).. In the second phase, semi-dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for substrate concentration of 100 g/l (TS-11.2%) for investigating the start-up performances under thermophilic condition (50°C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS for the substrate concentration of 100 g/l. About 66.7% of volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day-1. A laboratory bench scale reactor with a capacity of 36.8 litres was designed and fabricated to carry out the continuous anaerobic digestion of OFMSW in the third phase. The purpose of this study was to evaluate the performance of the digester at total solid concentration of 12% (semi-dry) under mesophlic condition (32°C). The digester was operated with different organic loading rates (OLRs) and constant retention time. The performance of the reactor was evaluated using parameters such as pH, volatile fatty acid (VFA), alkalinity, chemical oxygen demand (COD), TOC and ammonia-N as well as biogas yield. During the reactor’s start-up period, the process is stable and there is no inhibition occurred and the average biogas production was 14.7 L/day. The reactor was fed in continuous mode with different OLRs (3.1,4.2 and 5.65 kg VS/m3/d) at constant retention time of 30 days. The highest volatile solid degradation of 65.9%, with specific biogas production of 368 L/kg VS fed was achieved with OLR of 3.1 kg VS/m3/d. Modelling and simulation of anaerobic digestion of OFMSW in continuous operation is done using adapted Anaerobic Digestion Model No 1 (ADM1).The proposed model, which has 34 dynamic state variables, considers both biochemical and physicochemical processes and contains several inhibition factors including three gas components. The number of processes considered is 28. The model is implemented in Matlab® version 7.11.0.584(R2010b). The model based on adapted ADM1 was tested to simulate the behaviour of a bioreactor for the mesophilic anaerobic digestion of OFMSW at OLR of 3.1 kg VS/m3/d. ADM1 showed acceptable simulating results.
Resumo:
Several series of Eu3+ based red emitting phosphor materials were synthesized using solid state reaction route and their properties were characterized. The present studies primarily investigated the photoluminescence properties of Eu3+ in a family of closely related host structure with a general formula Ln3MO7. The results presented in the previous chapters throws light to a basic understanding of the structure, phase formation and the photoluminescence properties of these compounds and their co-relations. The variation in the Eu3+ luminescence properties with different M cations was studied in Gd3-xMO7 (M = Nb, Sb, Ta) system.More ordering in the host lattice and more uniform distribution of Eu3+ ions resulting in the increased emission properties were observed in tantalate system.Influence of various lanthanide ion (Lu, Y, Gd, La) substitutions on the Eu3+ photoluminescence properties in Ln3MO7 host structures was also studied. The difference in emission profiles with different Ln ions demonstrated the influence of long range ordering, coordination of cations and ligand polarizability in the emission probabilities, intensity and quantum efficiency of these phosphor materials. Better luminescence of almost equally competing intensities from all the 4f transitions of Eu3+ was noticed for La3TaO7 system. Photoluminescence properties were further improved in La3TaO7 : Eu3+ phosphors by the incorporation of Ba2+ ions in La3+ site. New red phosphor materials Gd2-xGaTaO7 : xEu3+ exhibiting intense red emissions under UV excitation were prepared. Optimum doping level of Eu3+ in these different host lattices were experimentally determined. Some of the prepared samples exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. In the present studies, Eu3+ acts as a structural probe determining the coordination and symmetry of the atoms in the host lattice. Results from the photoluminescence studies combined with the powder XRD and Raman spectroscopy investigations helped in the determination of the correct crystal structures and phase formation of the prepared compounds. Thus the controversy regarding the space groups of these compounds could be solved to a great extent. The variation in the space groups with different cation substitutions were discussed. There was only limited understanding regarding the various influential parameters of the photoluminescence properties of phosphor materials. From the given studies, the dependence of photoluminescence properties on the crystal structure and ordering of the host lattice, site symmetries, polarizability of the ions, distortions around the activator ion, uniformity in the activator distribution, concentration of the activator ion etc. were explained. Although the presented work does not directly evidence any application, the materials developed in the studies can be used for lighting applications together with other components for LED lighting. All the prepared samples were well excitable under near UV radiation. La3TaO7 : 0.15Eu3+ phosphor with high efficiency and intense orange red emissions can be used as a potential red component for the realization of white light with better color rendering properties. Gd2GaTaO7 : Eu3+, Bi2+ red phosphors give good color purity matching to NTSC standards of red. Some of these compounds exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. However thermal stability and electrical output using these compounds should be studied further before applications. Based on the studies in the closely related Ln3MO7 structures, some ideas on selecting better host lattice for improved luminescence properties could be drawn. Analyzing the CTB position and the number of emission splits, a general understanding on the doping sites can be obtained. These results could be helpful for phosphor designs in other host systems also, for enhanced emission intensity and efficiency.
Resumo:
The nondestructive determination of plant total dry matter (TDM) in the field is greatly preferable to the harvest of entire plots in areas such as the Sahel where small differences in soil properties may cause large differences in crop growth within short distances. Existing equipment to nondestructively determine TDM is either expensive or unreliable. Therefore, two radiometers for measuring reflected red and near-infrared light were designed, mounted on a single wheeled hand cart and attached to a differential Global Positioning System (GPS) to measure georeferenced variations in normalized difference vegetation index (NDVI) in pearl millet fields [Pennisetum glaucum (L.) R. Br.]. The NDVI measurements were then used to determine the distribution of crop TDM. The two versions of the radiometer could (i) send single NDVI measurements to the GPS data logger at distance intervals of 0.03 to 8.53 m set by the user, and (ii) collect NDVI values averaged across 0.5, 1, or 2 m. The average correlation between TDM of pearl millet plants in planting hills and their NDVI values was high (r^2 = 0.850) but varied slightly depending on solar irradiance when the instrument was calibrated. There also was a good correlation between NDVI, fractional vegetation cover derived from aerial photographs and millet TDM at harvest. Both versions of the rugged instrument appear to provide a rapid and reliable way of mapping plant growth at the field scale with a high spatial resolution and should therefore be widely tested with different crops and soil types.
Resumo:
Little is known about the residual effects of crop residue (CR) and phosphorus (P) application on the fallow vegetation following repeated cultivation of pearl millet [Pennisetum glaucum (L.) R. Br.] in the Sahel. The objective of this study, therefore, was (i) to measure residual effects of CR, mulched at annual rates of 0, 500, 1000 and 2000 kg CR ha^-1, broadcast P at 0 and 13 kg P ha^-1 and P placement at 0, 1, 3, 5 and 7 kg P ha^-1 on the herbaceous dry matter (HDM) 2 years after the end of the experiment and (ii) to test a remote sensing method for the quantitative estimation of HDM. Compared with unmulched plots, a doubling of HDM was measured in plots that had received at least 500 kg CR ha^-1. Previous broadcast P application led to HDM increases of 14% compared with unfertilised control plots, whereas no residual effects of P placement were detected. Crop residue and P treatments caused significant shifts in flora composition. Digital analysis of colour photographs taken of the fallow vegetation and the bare soil revealed that the number of normalised green band pixels averaged per plot was highly correlated with HDM (r=0.86) and that red band pixels were related to differences in soil surface crusting. Given the traditional use of fallow vegetation as fodder, the results strongly suggest that for the integrated farming systems of the West African Sahel, residual effects of soil amendments on the fallow vegetation should be included in any comprehensive analysis of treatment effects on the agro-pastoral system.
Resumo:
Summary: Productivity and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. For these objectives the botanical composition of the swards is of particular importance, especially, the content of legumes due to their ability to fix airborne nitrogen. As it can vary considerably within a field, a non-destructive detection method while doing other tasks would facilitate a more targeted sward management and could predict the nitrogen supply of the soil for the subsequent crop. This study was undertaken to explore the potential of digital image analysis (DIA) for a non destructive prediction of legume dry matter (DM) contribution of legume-grass mixtures. For this purpose an experiment was conducted in a greenhouse, comprising a sample size of 64 experimental swards such as pure swards of red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as well as binary mixtures of each legume with perennial ryegrass (Lolium perenne L.). Growth stages ranged from tillering to heading and the proportion of legumes from 0 to 80 %. Based on digital sward images three steps were considered in order to estimate the legume contribution (% of DM): i) The development of a digital image analysis (DIA) procedure in order to estimate legume coverage (% of area). ii) The description of the relationship between legume coverage (% area) and legume contribution (% of DM) derived from digital analysis of legume coverage related to the green area in a digital image. iii) The estimation of the legume DM contribution with the findings of i) and ii). i) In order to evaluate the most suitable approach for the estimation of legume coverage by means of DIA different tools were tested. Morphological operators such as erode and dilate support the differentiation of objects of different shape by shrinking and dilating objects (Soille, 1999). When applied to digital images of legume-grass mixtures thin grass leaves were removed whereas rounder clover leaves were left. After this process legume leaves were identified by threshold segmentation. The segmentation of greyscale images turned out to be not applicable since the segmentation between legumes and bare soil failed. The advanced procedure comprising morphological operators and HSL colour information could determine bare soil areas in young and open swards very accurately. Also legume specific HSL thresholds allowed for precise estimations of legume coverage across a wide range from 11.8 - 72.4 %. Based on this legume specific DIA procedure estimated legume coverage showed good correlations with the measured values across the whole range of sward ages (R2 0.96, SE 4.7 %). A wide range of form parameters (i.e. size, breadth, rectangularity, and circularity of areas) was tested across all sward types, but none did improve prediction accuracy of legume coverage significantly. ii) Using measured reference data of legume coverage and contribution, in a first approach a common relationship based on all three legumes and sward ages of 35, 49 and 63 days was found with R2 0.90. This relationship was improved by a legume-specific approach of only 49- and 63-d old swards (R2 0.94, 0.96 and 0.97 for red clover, white clover, and lucerne, respectively) since differing structural attributes of the legume species influence the relationship between these two parameters. In a second approach biomass was included in the model in order to allow for different structures of swards of different ages. Hence, a model was developed, providing a close look on the relationship between legume coverage in binary legume-ryegrass communities and the legume contribution: At the same level of legume coverage, legume contribution decreased with increased total biomass. This phenomenon may be caused by more non-leguminous biomass covered by legume leaves at high levels of total biomass. Additionally, values of legume contribution and coverage were transformed to the logit-scale in order to avoid problems with heteroscedasticity and negative predictions. The resulting relationships between the measured legume contribution and the calculated legume contribution indicated a high model accuracy for all legume species (R2 0.93, 0.97, 0.98 with SE 4.81, 3.22, 3.07 % of DM for red clover, white clover, and lucerne swards, respectively). The validation of the model by using digital images collected over field grown swards with biomass ranges considering the scope of the model shows, that the model is able to predict legume contribution for most common legume-grass swards (Frame, 1992; Ledgard and Steele, 1992; Loges, 1998). iii) An advanced procedure for the determination of legume DM contribution by DIA is suggested, which comprises the inclusion of morphological operators and HSL colour information in the analysis of images and which applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. Low residuals between measured and calculated values of legume dry matter contribution were found for the separate legume species (R2 0.90, 0.94, 0.93 with SE 5.89, 4.31, 5.52 % of DM for red clover, white clover, and lucerne swards, respectively). The introduced DIA procedure provides a rapid and precise estimation of legume DM contribution for different legume species across a wide range of sward ages. Further research is needed in order to adapt the procedure to field scale, dealing with differing light effects and potentially higher swards. The integration of total biomass into the model for determining legume contribution does not necessarily reduce its applicability in practice as a combined estimation of total biomass and legume coverage by field spectroscopy (Biewer et al. 2009) and DIA, respectively, may allow for an accurate prediction of the legume contribution in legume-grass mixtures.
Resumo:
A real-time analysis of renewable energy sources, such as arable crops, is of great importance with regard to an optimised process management, since aspects of ecology and biodiversity are considered in crop production in order to provide a sustainable energy supply by biomass. This study was undertaken to explore the potential of spectroscopic measurement procedures for the prediction of potassium (K), chloride (Cl), and phosphate (P), of dry matter (DM) yield, metabolisable energy (ME), ash and crude fibre contents (ash, CF), crude lipid (EE), nitrate free extracts (NfE) as well as of crude protein (CP) and nitrogen (N), respectively in pretreated samples and undisturbed crops. Three experiments were conducted, one in a laboratory using near infrared reflectance spectroscopy (NIRS) and two field spectroscopic experiments. Laboratory NIRS measurements were conducted to evaluate to what extent a prediction of quality parameters is possible examining press cakes characterised by a wide heterogeneity of their parent material. 210 samples were analysed subsequent to a mechanical dehydration using a screw press. Press cakes serve as solid fuel for thermal conversion. Field spectroscopic measurements were carried out with regard to further technical development using different field grown crops. A one year lasting experiment over a binary mixture of grass and red clover examined the impact of different degrees of sky cover on prediction accuracies of distinct plant parameters. Furthermore, an artificial light source was used in order to evaluate to what extent such a light source is able to minimise cloud effects on prediction accuracies. A three years lasting experiment with maize was conducted in order to evaluate the potential of off-nadir measurements inside a canopy to predict different quality parameters in total biomass and DM yield using one sensor for a potential on-the-go application. This approach implements a measurement of the plants in 50 cm segments, since a sensor adjusted sideways is not able to record the entire plant height. Calibration results obtained by nadir top-of-canopy reflectance measurements were compared to calibration results obtained by off-nadir measurements. Results of all experiments approve the applicability of spectroscopic measurements for the prediction of distinct biophysical and biochemical parameters in the laboratory and under field conditions, respectively. The estimation of parameters could be conducted to a great extent with high accuracy. An enhanced basis of calibration for the laboratory study and the first field experiment (grass/clover-mixture) yields in improved robustness of calibration models and allows for an extended application of spectroscopic measurement techniques, even under varying conditions. Furthermore, off-nadir measurements inside a canopy yield in higher prediction accuracies, particularly for crops characterised by distinct height increment as observed for maize.
Resumo:
Das Mahafaly Plateau im südwestlichen Madagaskar ist gekennzeichnet durch raue klimatische Bedingungen, vor allem regelmäßige Dürren und Trockenperioden, geringe Infrastruktur, steigende Unsicherheit, hohe Analphabetenrate und regelmäßige Zerstörung der Ernte durch Heuschreckenplagen. Da 97% der Bevölkerung von der Landwirtschaft abhängen, ist eine Steigerung der Produktivität von Anbausystemen die Grundlage für eine Verbesserung der Lebensbedingungen und Ernährungssicherheit in der Mahafaly Region. Da wenig über die Produktivität von traditionellen extensiven und neu eingeführten Anbaumethoden in diesem Gebiet bekannt ist, waren die Zielsetzungen der vorliegenden Arbeit, die limitierenden Faktoren und vielversprechende alternative Anbaumethoden zu identifizieren und diese unter Feldbedingungen zu testen. Wir untersuchten die Auswirkungen von lokalem Viehmist und Holzkohle auf die Erträge von Maniok, der Hauptanbaufrucht der Region, sowie die Beiträge von weiteren Faktoren, die im Untersuchungsgebiet ertragslimitierend sind. Darüber hinaus wurde in der Küstenregion das Potenzial für bewässerten Gemüseanbau mit Mist und Holzkohle untersucht, um zu einer Diversifizierung von Einkommen und Ernährung beizutragen. Ein weiterer Schwerpunkt dieser Arbeit war die Schätzung von Taubildung und deren Beitrag in der Jahreswasserbilanz durch Testen eines neu entworfenen Taumessgerätes. Maniok wurde über drei Jahre und in drei Versuchsfeldern in zwei Dörfern auf dem Plateau angebaut, mit applizierten Zeburindermistraten von 5 und 10 t ha-1, Holzkohleraten von 0,5 und 2 t ha-1 und Maniokpflanzdichten von 4500 Pflanzen ha-1. Maniokknollenerträge auf Kontrollflächen erreichten 1 bis 1,8 t Trockenmasse (TM) ha-1. Mist führte zu einer Knollenertragssteigerung um 30 - 40% nach drei Jahren in einem kontinuierlich bewirtschafteten Feld mit geringer Bodenfruchtbarkeit, hatte aber keinen Effekt auf den anderen Versuchsfeldern. Holzkohle hatte keinen Einfluss auf Erträge über den gesamten Testzeitraum, während die Infektion mit Cassava-Mosaikvirus zu Ertragseinbußen um bis zu 30% führte. Pflanzenbestände wurden felder-und jahresübergreifend um 4-54% des vollen Bestandes reduziert, was vermutlich auf das Auftreten von Trockenperioden und geringe Vitalität von Pflanzmaterial zurückzuführen ist. Karotten (Daucus carota L. var. Nantaise) und Zwiebeln (Allium cepa L. var. Red Créole) wurden über zwei Trockenzeiten mit lokal erhältlichem Saatgut angebaut. Wir testeten die Auswirkungen von lokalem Rindermist mit einer Rate von 40 t ha-1, Holzkohle mit einer Rate von 10 t ha-1, sowie Beschattung auf die Gemüseernteerträge. Lokale Bewässerungswasser hatte einen Salzgehalt von 7,65 mS cm-1. Karotten- und Zwiebelerträge über Behandlungen und Jahre erreichten 0,24 bis 2,56 t TM ha-1 beziehungsweise 0,30 bis 4,07 DM t ha-1. Mist und Holzkohle hatten keinen Einfluss auf die Erträge beider Kulturen. Beschattung verringerte Karottenerträge um 33% im ersten Jahr, während sich die Erträge im zweiten Jahr um 65% erhöhten. Zwiebelerträge wurden unter Beschattung um 148% und 208% im ersten und zweiten Jahr erhöht. Salines Bewässerungswasser sowie Qualität des lokal verfügbaren Saatgutes reduzierten die Keimungsraten deutlich. Taubildung im Küstendorf Efoetsy betrug 58,4 mm und repräsentierte damit 19% der Niederschlagsmenge innerhalb des gesamten Beobachtungszeitraum von 18 Monaten. Dies weist darauf hin, dass Tau in der Tat einen wichtigen Beitrag zur jährlichen Wasserbilanz darstellt. Tageshöchstwerte erreichten 0,48 mm. Die getestete Tauwaage-Vorrichtung war in der Lage, die nächtliche Taubildung auf der metallischen Kondensationsplatte zuverlässig zu bestimmen. Im abschließenden Kapitel werden die limitierenden Faktoren für eine nachhaltige Intensivierung der Landwirtschaft in der Untersuchungsregion diskutiert.
Resumo:
Se presenta experiencia educativa que propone la creaci??n de una red virtual entre centros que compartan los mismos ciclos formativos. Se realiza en el IES Aynadamar en Granada. Los objetivos son: contactar con los posibles interesados y establecer las comunicaciones necesarias; organizar la red; facilitar el acceso a todos los interesados en participar; organizar el foro de debate y sus contenidos; organizar el banco de recursos; programar las medidas necesarias para la dinamizaci??n de la red.