907 resultados para Recruitment bottlenecks
Resumo:
Plants respond to herbivore attack through a complex and variable system of defense, involving different physical barriers, toxic chemicals, and recruitment of natural enemies. To fully understand the relative role of each type of defense, their synergisms, redundancies, or antagonisms between traits, a variety of methods of enquiry, commonly used in plant physiology and ecology, have been employed. By overexpressing or silencing genes of interest, it is possible to understand the specific role of a particular defensive molecule or mode of action. We argue, however, that these types of experiments alone are not enough to holistically understand the physiological as well as ecological role of plant defenses. We thus advocate for the use of a combination of methods, including genetic modification, quantitative genetics, and phylogenetically controlled comparative studies.
Resumo:
Integrin adhesion receptors consist of non-covalently linked alpha and beta subunits each of which contains a large extracellular domain, a single transmembrane domain and a short cytoplasmic tail. Engaged integrins recruit to focal structures globally termed adhesion complexes. The cytoplasmic domain of the beta subunit is essential for this clustering. beta1 and beta3 integrins can recruit at distinct cellular locations (i.e. fibrillar adhesions vs focal adhesions, respectively) but it is not clear whether individual beta subunit cytoplasmic and transmembrane domains are by themselves sufficient to drive orthotopic targeting to the cognate adhesion complex. To address this question, we expressed full-length beta3 transmembrane anchored cytoplasmic domains and truncated beta3 cytoplasmic domains as GFP-fusion constructs and monitored their localization in endothelial cells. Membrane-anchored full-length beta3 cytoplasmic domain and a beta3 mutant lacking the NXXY motif recruited to adhesion complexes, while beta3 mutants lacking the NPXY and NXXY motifs or the transmembrane domain did not. Replacing the natural beta subunit transmembrane domain with an unrelated (i.e. HLA-A2 alpha chain) transmembrane domain significantly reduced recruitment to adhesion complexes. Transmembrane anchored beta3 and cytoplasmic domain constructs, however, recruited without discrimination to beta1- and beta3-rich adhesions complexes. These findings demonstrate that membrane anchorage and the NPXY (but not the NXXY) motif are necessary for beta3 cytoplasmic domain recruitment to adhesion complexes and that the natural transmembrane domain actively contributes to this recruitment. The beta3 transmembrane and cytoplasmic domains alone are insufficient for orthotopic recruitment to cognate adhesion complexes.
Resumo:
Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.
Resumo:
Multiple lines of evidence show that matrix metalloproteinases (MMPs) are involved in the peripheral neural system degenerative and regenerative processes. MMP-9 was suggested in particular to play a role in the peripheral nerve after injury or during Wallerian degeneration. Interestingly, our previous analysis of Lpin1 mutant mice (which present morphological signs of active demyelination and acute inflammatory cell migration, similar to processes present in the PNS undergoing Wallerian degeneration) revealed an accumulation of MMP-9 in the endoneurium of affected animals. We therefore generated a mouse line lacking both the Lpin1 and the MMP-9 genes in order to determine if MMP-9 plays a role in either inhibition or potentiation of the demyelinating phenotype present in Lpin1 knockout mice. The inactivation of MMP-9 alone did not lead to defects in PNS structure or function. Interestingly we observed that the double mutant animals showed reduced nerve conduction velocity, lower myelin protein mRNA expressions, and had more histological abnormalities as compared to the Lpin1 single mutants. In addition, based on immunohistochemical analysis and macrophage markers mRNA expression, we found a lower macrophage content in the sciatic nerve of the double mutant animals. Together our data indicate that MMP-9 plays a role in macrophage recruitment during postinjury PNS regeneration processes and suggest that slower macrophage infiltration delays regenerative processes in PNS.
Resumo:
Downmodulation or loss-of-function mutations of the gene encoding NOTCH1 are associated with dysfunctional squamous cell differentiation and development of squamous cell carcinoma (SCC) in skin and internal organs. While NOTCH1 receptor activation has been well characterized, little is known about how NOTCH1 gene transcription is regulated. Using bioinformatics and functional screening approaches, we identified several regulators of the NOTCH1 gene in keratinocytes, with the transcription factors DLX5 and EGR3 and estrogen receptor β (ERβ) directly controlling its expression in differentiation. DLX5 and ERG3 are required for RNA polymerase II (PolII) recruitment to the NOTCH1 locus, while ERβ controls NOTCH1 transcription through RNA PolII pause release. Expression of several identified NOTCH1 regulators, including ERβ, is frequently compromised in skin, head and neck, and lung SCCs and SCC-derived cell lines. Furthermore, a keratinocyte ERβ-dependent program of gene expression is subverted in SCCs from various body sites, and there are consistent differences in mutation and gene-expression signatures of head and neck and lung SCCs in female versus male patients. Experimentally increased ERβ expression or treatment with ERβ agonists inhibited proliferation of SCC cells and promoted NOTCH1 expression and squamous differentiation both in vitro and in mouse xenotransplants. Our data identify a link between transcriptional control of NOTCH1 expression and the estrogen response in keratinocytes, with implications for differentiation therapy of squamous cancer.
Resumo:
Adoptive transfer therapy of in vitro-expanded tumor-specific cytolytic T lymphocytes (CTLs) can mediate objective cancer regression in patients. Yet, technical limitations hamper precise monitoring of posttherapy T cell responses. Here we show in a mouse model that fused single photon emission computed tomography and x-ray computed tomography allows quantitative whole-body imaging of (111)In-oxine-labeled CTLs at tumor sites. Assessment of CTL localization is rapid, noninvasive, three-dimensional, and can be repeated for longitudinal analyses. We compared the effects of lymphodepletion before adoptive transfer on CTL recruitment and report that combined treatment increased intratumoral delivery of CTLs and improved antitumor efficacy. Because (111)In-oxine is a Food and Drug Administration-approved clinical agent, and human SPECT-CT systems are available, this approach should be clinically translatable, insofar as it may assess the efficacy of immunization procedures in individual patients and lead to development of more effective therapies.
Resumo:
In keratinocytes, the cyclin/CDK inhibitor p21(WAF1/Cip1) is a direct transcriptional target of Notch1 activation; loss of either the p21 or Notch1 genes expands stem cell populations and facilitates tumor development. The Notch1 tumor-suppressor function was associated with down-regulation of Wnt signaling. Here, we show that suppression of Wnt signaling by Notch1 activation is mediated, at least in part, by down-modulation of Wnts gene expression. p21 is a negative regulator of Wnts transcription downstream of Notch1 activation, independently of effects on the cell cycle. More specifically, expression of the Wnt4 gene is under negative control of endogenous p21 both in vitro and in vivo. p21 associates with the E2F-1 transcription factor at the Wnt4 promoter and causes curtailed recruitment of c-Myc and p300, and histone hypoacetylation at this promoter. Thus, p21 acts as a selective negative regulator of transcription and links the Notch and Wnt signaling pathways in keratinocyte growth control.
Resumo:
BACKGROUND: Prevalence and risk factors for Chlamydia trachomatis infection among young men in Switzerland is still unknown. The objective of the present study was to assess prevalence and risk factors for C. trachomatis infection in young Swiss men. METHODS: 517 young Swiss men were enrolled in this cross-sectional study during their compulsory military recruitment. Participants completed a questionnaire and gave urine samples which were screened for C. trachomatis DNA by PCR. Genotyping of positive samples was done by amplification and sequencing the ompA gene. RESULTS: The prevalence of chlamydial infection among young Swiss male was 1.2% (95% confidence interval [95%CI], 0.4-2.5%). C. trachomatis infection was only identified among the 306 men having multiple sexual partner. Although frequent, neither unprotected sex (absence of condom use), nor alcohol and drug abuse were associated with chlamydial infection. Men living in cities were more frequently infected (2.9%, 95%CI 0.8-7.4%) than men living in rural areas (0.5%, 95%CI 0.1-1.9%, p = 0.046). Moreover, naturalised Swiss citizens were more often positive (4.9%, 95%CI 1.3-12.5%) than native-born Swiss men (0.5%, 95%CI 0.1-1.7%, p = 0.003). CONCLUSION: In comparison with other countries, the prevalence of chlamydial infection in men is extremely low in Switzerland, despite a significant prevalence of risky sexual behaviour. C. trachomatis infection was especially prevalent in men with multiple sexual partners. Further research is required (i) to define which subgroup of the general population should be routinely screened, and (ii) to test whether such a targeted screening strategy will be effective to reduce the prevalence of chlamydial infection among this population.
Resumo:
Background: Immunogenicity of standard infl uenza vaccine is suboptimal in lung transplant recipients. Intradermal vaccine may elicit stronger responses due to recruitment of local dendritic cells. We compared the immunogenicity of the infl uenza vaccine administered intradermally (ID) to the standard intramuscular (IM) vaccination. Methods: In this investigator-blinded, two-center, prospective trial, lung transplant patients were randomized to receive intradermal (6ug) or intramuscular (15ug) 2008/9 trivalent inactivated infl uenza vaccine. Immunogenicity was evaluated using a standard hemagglutination inhibition assay (HIA). Response to the vaccine was defi ned as a fourfold increase of the HIA levels for any of the 3 viral strains in the vaccine. Geometric mean titers (GMT) and seroprotection rate (HIA ≥32) were also analyzed. Patients were followed during 6 months for the development of infl uenza or acute rejection. Results: We randomized 84 patients to receive the ID (n=41) vs. IM (n=43) vaccine, respectively. Baseline characteristics were similar between groups. Median time from transplantation was 3.4 yrs (ID) vs. 3.3 yrs (IM) (p=0.84). Vaccine response to at least one antigen was seen in 6/41 (14.6%) patients in the ID vs. 8/43 (18.6%) in the IM group (p=0.77). In the ID group, GMTs (95% CI) after vaccination were 15.7 (11.1-22.3) for H1N1, 84.0 (52.0-135.7) for H3N2, and 14.5 (9.6-21.8) for B strains vs. in the IM group 17.5 (11.8-25.9) for H1N1, 108.9 (77.5-153.2) for H3N2, and 20.2 (12.8-31.9) for B (p=NS, all 3 strains). Seroprotection was 39% (H1N1), 82.9% (H3N2) and 29.3% (B strain) in the ID group vs. 27.9% (H1N1), 97.7% (H3N2) and 58.1% (B strain) in the IM group. No factors associated with vaccine response were identifi ed. Mild adverse events were seen in 44% of patients (ID) vs. 34% (IM) (p=0.38). Two patients (4.8%) in the ID group developed infl uenza infection compared to none in the IM group. Two patients in each group developed biopsy-proven acute rejection during follow-up. Conclusions: Immunogenicity of the 2008/09 infl uenza vaccine was poor in lung transplant recipients. ID administration of the vaccine elicited similar immune responses to standard IM vaccination. Novel strategies of vaccination are needed to protect lung transplant recipients from infl uenza.
Resumo:
The objective of the current study was to determine the predictive value of high normal gamma-glutamyltransferase (GGT) level as an indication of heavy drinking in young men. In a sample of 577 men attending a one-day army recruitment process mandatory for all Swiss men at age 19 years, GGT level was evaluated as the dependent variable for each of eight dichotomous classifications of individuals on the basis of meeting cut-off criteria for five indexes of alcohol use, two indexes of alcohol-related problems, and one index of body mass. The sensitivity, specificity, and predictive values of GGT level in identifying subjects as either heavy drinkers or being overweight were determined. Compared with findings for their counterparts, GGT level was higher in subjects reporting consumption of more than 14 drinks per week (20.5 +/- 7.81 vs. 18.9 +/- 7.60, P <.05), in those reporting being drunk at least once during the past 30 days (20.3 +/- 7.80 vs. 18.3 +/- 7.43, P <.001), and in individuals with body mass indexes >or=25 kg/m(2) (25.8 +/- 10.84 vs. 18.3 +/- 6.59, P <.001). At a GGT level cut-off of 20 U/l, the sensitivity, specificity, and positive and negative predictive values of either being a heavy drinker or overweight were 48.2%, 70.2%, 67.7%, and 51.2%, respectively. Exclusion of subjects with body mass indexes of >or=25 kg/m(2) revealed similar results. High normal GGT level in young men is indicative of heavy alcohol use or being overweight; when present, subjects should be screened further for potential concomitant drinking problems.
Resumo:
Bcl10, a caspase recruitment domain (CARD)-containing protein identified from a breakpoint in mucosa-associated lymphoid tissue (MALT) B lymphomas, is essential for antigen-receptor-mediated nuclear factor kappaB (NF-kappaB) activation in lymphocytes. We have identified a novel CARD-containing protein and interaction partner of Bcl10, named Carma1. Carma1 is predominantly expressed in lymphocytes and represents a new member of the membrane-associated guanylate kinase family. Carma1 binds Bcl10 via its CARD motif and induces translocation of Bcl10 from the cytoplasm into perinuclear structures. Moreover, expression of Carma1 induces phosphorylation of Bcl10 and activation of the transcription factor NF-kappaB. We propose that Carma1 is a crucial component of a novel Bcl10-dependent signaling pathway in T-cells that leads to the activation of NF-kappaB.
Resumo:
CCAAT/enhancer-binding protein (C/EBP) family members are transcription factors involved in important physiological processes, such as cellular proliferation and differentiation, regulation of energy homeostasis, inflammation, and hematopoiesis. Transcriptional activation by C/EBPalpha and C/EBPbeta involves the coactivators CREB-binding protein (CBP) and p300, which promote transcription by acetylating histones and recruiting basal transcription factors. In this study, we show that C/EBPdelta is also using CBP as a coactivator. Based on sequence homology with C/EBPalpha and -beta, we identify in C/EBPdelta two conserved amino acid segments that are necessary for the physical interaction with CBP. Using reporter gene assays, we demonstrate that mutation of these residues prevents CBP recruitment and diminishes the transactivating potential of C/EBPdelta. In addition, our results indicate that C/EBP family members not only recruit CBP but specifically induce its phosphorylation. We provide evidence that CBP phosphorylation depends on its interaction with C/EBPdelta and define point mutations within one of the two conserved amino acid segments of C/EBPdelta that abolish CBP phosphorylation as well as transcriptional activation, suggesting that this new mechanism could be important for C/EBP-mediated transcription.
Resumo:
Purpose: The mechanisms by which CD4+CD25+Foxp3+ T cells (Tregs) regulate effector T cells in a transplantation setting and their in vivo homeostasis still remain to be clarified. Using a mouse adoptive transfer and skin transplantation model, we analyzed the in vivo expansion, effector function and trafficking of effector T cells and donor-specific Tregs, in response to an allograft. Methods and materials: Antigen-specific Tregs were generated and expanded in vitro by culturing freshly isolated Tregs from BALB/c mice (H2d) with syngeneic dendritic cells pulsed with an allopeptide (here the Kb peptide derived from the MHC class I molecule of allogeneic H2b mice). Fluorescent-labelled CD4+CD25- naive T cells and donor-antigen-specific Tregs were transferred alone or coinjected into syngeneic BALB/c-Nude recipients transplanted with allogeneic C57BL/6xBALB/c donor skin. Results: As opposed to their in vitro hyporesponsiveness, Tregs divided in vivo, migrated and accumulated in the allograft draining lymph nodes (drLN) and within the graft. The co-transfer of Tregs did not modify the early proliferation and homing of CD4+CD25- T cells to secondary lymphoid organs. But, in the presence of Tregs, effector T cells produced significantly less IFN- and IL-2 effector cytokines, while higher amounts of IL-10 were detected in the spleen and drLN of these mice. Furthermore, time-course studies showed that Tregs were recruited into the allograft at a very early stage posttransplantation and prevented infiltration by effector T cells. Conclusion: Overall, our results suggest that suppression of graft rejection involves the early recruitment of donor-specific Tregs at the sites of antigenic challenge and that Tregs mainly regulate the effector arm of T cell alloresponses.
Resumo:
Résumé : Le positionnement correct du fuseau mitotique est crucial pour les divisions cellulaires asymétriques, car il gouverne le contrôle spatial de la division cellulaire et assure la ségrégation adéquate des déterminants cellulaires. Malgré leur importance, les mécanismes contrôlant le positionnement du fuseau mitotique sont encore mal compris. Chez l'embryon au stade une-cellule du nématode Caenorhabditis elegans, le fuseau mitotique est positionné de manière asymétrique durant l'anaphase grâce à l'action de générateurs de force situés au cortex cellulaire, et dont la nature était jusqu'alors indéterminée. Ces générateurs de force corticaux exercent une traction sur les microtubules astraux et sont dépendants de deux protéines Gα et de leurs protéines associées. Cette thèse traite de la nature de la machinerie responsable pour la génération des forces de tractions, ainsi que de son lien avec les protéines Gα et associées. Nous avons combiné des expériences de coupure par faisceau laser du fuseau mitotique avec le contrôle temporel de l'inactivation de gènes ou de l'exposition à des produits pharmacologiques. De cette manière, nous avons établi que la dynéine, un moteur se déplaçant vers l'extrémité négative des microtubules, ainsi que la dynamique des microtubules, sont toutes deux requises pour la génération efficace des forces de tractions. Nous avons démontré que les protéines Gα et leurs protéines associées GPR-1/2 et LIN-5 interagissent in vivo avec LIS-1, un composant du complexe de la dynéine. De plus, nous avons découvert que les protéines Gα, GPR-1/2 et LIN-5 promeuvent la présence du complexe de la dynéine au cortex cellulaire. Nos résultats suggèrent un mécanisme par lequel les protéines Gα permettent le recrutement cortical de GPR-1/2 et LIN-5, assurant ainsi la présence de la dynéine au cortex. Conjointement avec la dynamique des microtubules, ce mécanisme permet la génération des forces de tractions afin d'obtenir une division cellulaire correcte. Comme les mécanismes contrôlant le positionnement du fuseau mitotique et les divisions cellulaires asymétriques sont conservés au cours de l'évolution, nous espérons que les mécanismes élucidés par ce travail sont d'importance générale pour la génération de la diversité cellulaire durant le développement. De plus, ces mécanismes pourraient être applicables à d'autres divisions asymétriques, comme celle des cellules souches, dont le disfonctionnement peut entraîner la génération de cellules cancéreuses. Abstract : Proper spindle positioning is crucial for asymmetric cell division, because it controls spatial aspects of cell division and the correct inheritance of cell-fate determinants. However, the mechanisms governing spindle positioning remain incompletely understood. In the Caenorhabditis elegans one-cell stage embryo, the spindle becomes asymmetrically positioned during anaphase through the action of as-yet unidentified cortical force generators that pull on astral microtubules and that depend on two Gα proteins and associated proteins. This thesis addresses the nature of the force generation machinery and the link with the Gα and associated proteins. By performing spindle-severing experiments following temporally restricted gene inactivation and drug exposure, we established that microtubule dynamics and the minus-end directed motor dynein are both required for generating efficient pulling forces. We discovered that the Gα proteins and their associated proteins GPR-1/2 and LIN-5 interact in vivo with LIS-1, a component of the dynein complex. Moreover, we uncovered that LIN-5, GPR-1/2 and the Gα proteins promote the presence of the dynein complex at the cell cortex. Our findings suggest a mechanism by which the Gα proteins enable GPR-1/2 and LIN-5 recruitment to the cortex, thus ensuring the presence of cortical dynein. Together with microtubule dynamics, this allows pulling forces to be exerted and proper cell division to be achieved. Because the mechanisms of spindle positioning and asymmetric cell division are conserved across evolution, we expect the underlying mechanism uncovered here to be of broad significance for the generation of cell diversity during development. Moreover, this mechanism could be relevant for other asymmetric cell divisions, such as stem cell divisions, whose dysfunction may lead to the generation of cancer cells.
Resumo:
Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes.