892 resultados para Reclamation of land.
Resumo:
The north-eastern escarpment of Madagascar harbours the island’s last remaining large-scale humid forest massifs surrounded by a small-scale agricultural mosaic. There is high deforestation, commonly thought to be caused by shifting cultivation practiced by local land users to produce upland rice. However, little is known about the dynamics between forest and shifting cultivation systems at a regional level. Our study presents a first attempt to quantify changes in the extent of forest and different agricultural land cover classes, and to identify the main dynamics of land cover change for two intervals, 1995–2005 and 2005–2011. Over the 16-year study period, the speed of forest loss increased, the total area of upland rice production remained almost stable, and the area of irrigated rice fields slightly increased. While our findings seem to confirm a general trend of land use intensification, deforestation through shifting cultivation is still on the rise. Deforestation mostly affects the small forest fragments interspersed in the agricultural mosaic and is slowly leading to a homogenization of the landscape. These findings have important implications for future interventions to slow forest loss in the region, as the processes of agricultural expansion through shifting cultivation versus intensified land use cannot per se be considered mutually exclusive.
Resumo:
Background Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop of Ethiopia where it is annually cultivated on more than three million hectares of land by over six million small-scale farmers. It is broadly grouped into white and brown-seeded type depending on grain color, although some intermediate color grains also exist. Earlier breeding experiments focused on white-seeded tef, and a number of improved varieties were released to the farming community. Thirty-six brown-seeded tef genotypes were evaluated using a 6 × 6 simple lattice design at three locations in the central highlands of Ethiopia to assess the productivity, heritability, and association among major pheno-morphic traits. Results The mean square due to genotypes, locations, and genotype by locations were significant (P < 0.01) for all traits studied. Genotypic and phenotypic coefficients of variations ranged from 2.5 to 20.3 % and from 4.3 to 21.7 %, respectively. Grain yield showed significant (P < 0.01) genotypic correlation with shoot biomass and harvest index, while it had highly significant (P < 0.01) phenotypic correlation with all the traits evaluated. Besides, association of lodging index with biomass and grain yield was negative and significant at phenotypic level while it was not significant at genotypic level. Cluster analysis grouped the 36 test genotypes into seven distinct classes. Furthermore, the first three principal components with eigenvalues greater than unity extracted 78.3 % of the total variation. Conclusion The current study, generally, revealed the identification of genotypes with superior grain yield and other desirable traits for further evaluation and eventual release to the farming community.
Resumo:
Land degradation as well as land conservation maps at a (sub-) national scale are critical for pro-ject planning for sustainable land management. It has long been recognized that online accessible and low-cost raster data sets (e.g. Landsat imagery, SRTM-DEM’s) provide a readily available basis for land resource assessments for developing countries. However, choice of spatial, tempo-ral and spectral resolution of such data is often limited. Furthermore, while local expert knowl-edge on land degradation processes is abundant, difficulties are often encountered when linking existing knowledge with modern approaches including GIS and RS. The aim of this study was to develop an easily applicable, standardized workflow for preliminary spatial assessments of land degradation and conservation, which also allows the integration of existing expert knowledge. The core of the developed method consists of a workflow for rule-based land resource assess-ment. In a systematic way, this workflow leads from predefined land degradation and conserva-tion classes to field indicators, to suitable spatial proxy data, and finally to a set of rules for clas-sification of spatial datasets. Pre-conditions are used to narrow the area of interest. Decision tree models are used for integrating the different rules. It can be concluded that the workflow presented assists experts from different disciplines in col-laboration GIS/RS specialists in establishing a preliminary model for assessing land degradation and conservation in a spatially explicit manner. The workflow provides support when linking field indicators and spatial datasets, and when determining field indicators for groundtruthing.
Resumo:
There is a general consensus that healthy soils are pivotal for food security. Food production is one of the main ecosystem services provided by and thus dependent on well-functioning soils. There are also intrinsic connections between the four pillars of food security: food availability, access, utilization, and stability; with how soils are managed, accessed and secured, in particular by food insecure and vulnerable populations. On the other hand, socio-political and economic processes that precipitate inequalities and heighten vulnerabilities among poor populations often increase pressure on soils due to unsustainable forms of land use and poor agricultural practises. This has often led to scenarios that can be described as: ‘poor soils, empty stomachs (hungry people) and poor livelihoods.' In 2015, in particular, as we head towards approval of the ‘Sustainable Development Goals' (SDGs), the role of Financing for Development is debated and agreed upon and a new climate pact is signed – these three political dimensions define how a new post-2015 agenda needs to be people-smart as well as resource-smart. For proposed SDG 2 (Food Security and Hunger), there can be so resolution without addressing people, policies and institutions.
Resumo:
These guidelines are a working instrument for the assessment and documentation of existing and potential strategies for land and water conservation (prevention and mitigation strategies) in DESIRE study sites. DESIRE (Desertification Mitigation and Remediation of Land) is a European Integrated Project. The DESIRE WB 3 methodology was developed by CDE and is based on experiences from Learning for Sustainability (LforS) and WOCAT.
Resumo:
Recent studies on the avalanche risk in alpine settlements suggested a strong dependency of the development of risk on variations in damage potential. Based on these findings, analyses on probable maximum losses in avalanche-prone areas of the municipality of Davos (CH) were used as an indicator for the long-term development of values at risk. Even if the results were subject to significant uncertainties, they underlined the dependency of today's risk on the historical development of land-use: Small changes in the lateral extent of endangered areas had a considerable impact on the exposure of values. In a second step, temporal variations in damage potential between 1950 and 2000 were compared in two different study areas representing typical alpine socio-economic development patterns: Davos (CH) and Galtür (A). The resulting trends were found to be similar; the damage potential increased significantly in number and value. Thus, the development of natural risk in settlements can for a major part be attributed to long-term shifts in damage potential.
Resumo:
The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.