995 resultados para Real losses
Resumo:
There is an increased interest in using broadcast disks to support mobile access to real-time databases. However, previous work has only considered the design of real-time immutable broadcast disks, the contents of which do not change over time. This paper considers the design of programs for real-time mutable broadcast disks - broadcast disks whose contents are occasionally updated. Recent scheduling-theoretic results relating to pinwheel scheduling and pfair scheduling are used to design algorithms for the efficient generation of real-time mutable broadcast disk programs.
Resumo:
ERRATA: We present corrections to Fact 3 and (as a consequence) to Lemma 1 of BUCS Technical Report BUCS-TR-2000-013 (also published in IEEE INCP'2000)[1]. These corrections result in slight changes to the formulae used for the identifications of shared losses, which we quantify.
Resumo:
Current Internet transport protocols make end-to-end measurements and maintain per-connection state to regulate the use of shared network resources. When two or more such connections share a common endpoint, there is an opportunity to correlate the end-to-end measurements made by these protocols to better diagnose and control the use of shared resources. We develop packet probing techniques to determine whether a pair of connections experience shared congestion. Correct, efficient diagnoses could enable new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. Our extensive simulation results demonstrate that the conditional (Bayesian) probing approach we employ provides superior accuracy, converges faster, and tolerates a wider range of network conditions than recently proposed memoryless (Markovian) probing approaches for addressing this opportunity.
Resumo:
A human-computer interface (HCI) system designed for use by people with severe disabilities is presented. People that are severely paralyzed or afflicted with diseases such as ALS (Lou Gehrig's disease) or multiple sclerosis are unable to move or control any parts of their bodies except for their eyes. The system presented here detects the user's eye blinks and analyzes the pattern and duration of the blinks, using them to provide input to the computer in the form of a mouse click. After the automatic initialization of the system occurs from the processing of the user's involuntary eye blinks in the first few seconds of use, the eye is tracked in real time using correlation with an online template. If the user's depth changes significantly or rapid head movement occurs, the system is automatically reinitialized. There are no lighting requirements nor offline templates needed for the proper functioning of the system. The system works with inexpensive USB cameras and runs at a frame rate of 30 frames per second. Extensive experiments were conducted to determine both the system's accuracy in classifying voluntary and involuntary blinks, as well as the system's fitness in varying environment conditions, such as alternative camera placements and different lighting conditions. These experiments on eight test subjects yielded an overall detection accuracy of 95.3%.
Resumo:
Personal communication devices are increasingly equipped with sensors that are able to collect and locally store information from their environs. The mobility of users carrying such devices, and hence the mobility of sensor readings in space and time, opens new horizons for interesting applications. In particular, we envision a system in which the collective sensing, storage and communication resources, and mobility of these devices could be leveraged to query the state of (possibly remote) neighborhoods. Such queries would have spatio-temporal constraints which must be met for the query answers to be useful. Using a simplified mobility model, we analytically quantify the benefits from cooperation (in terms of the system's ability to satisfy spatio-temporal constraints), which we show to go beyond simple space-time tradeoffs. In managing the limited storage resources of such cooperative systems, the goal should be to minimize the number of unsatisfiable spatio-temporal constraints. We show that Data Centric Storage (DCS), or "directed placement", is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, "amorphous placement", in which sensory samples are cached locally, and shuffling of cached samples is used to diffuse the sensory data throughout the whole network. We evaluate conditions under which directed versus amorphous placement strategies would be more efficient. These results lead us to propose a hybrid placement strategy, in which the spatio-temporal constraints associated with a sensory data type determine the most appropriate placement strategy for that data type. We perform an extensive simulation study to evaluate the performance of directed, amorphous, and hybrid placement protocols when applied to queries that are subject to timing constraints. Our results show that, directed placement is better for queries with moderately tight deadlines, whereas amorphous placement is better for queries with looser deadlines, and that under most operational conditions, the hybrid technique gives the best compromise.
Resumo:
This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.
Resumo:
This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.
Resumo:
This thesis examines the relationship between initial loss events and the corporate governance and earnings management behaviour of these firms. This is done using four years of corporate governance information spanning the report of an initial loss for companies listed on the UK Stock Exchange. An industry- and sizematched control sample is used in a difference-in-difference analysis to isolate the impact of the initial loss event during the period. It is reported that, in general, an initial loss motivates an improvement in corporate governance in those loss firms where a relative weakness existed prior to the loss and that these changes mainly occur before the initial loss is announced. Firms with stronger (i.e. better quality) corporate governance have less need to alter it in response to the loss. It is also reported that initial loss firms use positive abnormal accruals in the year before the loss in an attempt to defer/avoid the loss — the weaker corporate governance the more likely is it that loss firms manage earnings in this manner. Abnormal accruals are also found to be predictive of an initial loss and when used as a conditioning variable, the quality of corporate governance is an important mitigating factor in this regard. Once the loss is reported, loss firms unwind these abnormal accruals although no evidence of big-bath behaviour is found. The extent to which these abnormal accruals are subsequently unwound are also found to be a function of both the quality of corporate governance as well as the severity of the initial loss.
Resumo:
Malaysian Financial Reporting Standard (FRS) No. 136, Impairment of Assets, was issued in 2005. The standard requires public listed companies to report their non-current assets at no more than their recoverable amount. When the value of impaired assets is recovered, or partly recovered, FRS 136 requires the impairment charges to be reversed to its new recoverable amount. This study tests whether the reversal of impairment losses by Malaysian firms is more closely associated with economic reasons or reporting incentives. The sample of this study consists of 182 public companies listed on Bursa Malaysia (formerly known as the Kuala Lumpur Stock Exchange) that reported reversals of their impairment charges during the period 2006-2009. These firms are matched with firms which do not reverse impairment on the basis of industrial classification and size. In the year of reversal, this study finds that the reversal firms are more profitable (before reversals) than their matched firms. On average, the Malaysian stock market values the reversals of impairment losses positively. These results suggest that the reversals generally reflect increases in the value of the previously impaired assets. After partitioning firms that are likely to manage earnings and those that are not, this study finds that there are some Malaysian firms which reverse the impairment charges to manage earnings. Their reversals are not value-relevant, and are negatively associated with future firm performance. On the other hand, the reversals of firms which are deemed not to be earnings managers are positively associated with both future firm performance and current stock price performance, and this is the dominant motivation for the reversal of impairment charges in Malaysia. In further analysis, this study provides evidence that the opportunistic reversals are also associated with other earnings management manifestations, namely abnormal working capital accruals and the motivation to avoid earnings declines. In general, the findings suggest that the fair value measurement in impairment standard provides useful information to the users of financial statements.
Resumo:
The aging population in many countries brings into focus rising healthcare costs and pressure on conventional healthcare services. Pervasive healthcare has emerged as a viable solution capable of providing a technology-driven approach to alleviate such problems by allowing healthcare to move from the hospital-centred care to self-care, mobile care, and at-home care. The state-of-the-art studies in this field, however, lack a systematic approach for providing comprehensive pervasive healthcare solutions from data collection to data interpretation and from data analysis to data delivery. In this thesis we introduce a Context-aware Real-time Assistant (CARA) architecture that integrates novel approaches with state-of-the-art technology solutions to provide a full-scale pervasive healthcare solution with the emphasis on context awareness to help maintaining the well-being of elderly people. CARA collects information about and around the individual in a home environment, and enables accurately recognition and continuously monitoring activities of daily living. It employs an innovative reasoning engine to provide accurate real-time interpretation of the context and current situation assessment. Being mindful of the use of the system for sensitive personal applications, CARA includes several mechanisms to make the sophisticated intelligent components as transparent and accountable as possible, it also includes a novel cloud-based component for more effective data analysis. To deliver the automated real-time services, CARA supports interactive video and medical sensor based remote consultation. Our proposal has been validated in three application domains that are rich in pervasive contexts and real-time scenarios: (i) Mobile-based Activity Recognition, (ii) Intelligent Healthcare Decision Support Systems and (iii) Home-based Remote Monitoring Systems.
Resumo:
In order to determine the size-resolved chemical composition of single particles in real-time an ATOFMS was deployed at urban background sites in Paris and Barcelona during the MEGAPOLI and SAPUSS monitoring campaigns respectively. The particle types detected during MEGAPOLI included several carbonaceous species, metal-containing types and sea-salt. Elemental carbon particle types were highly abundant, with 86% due to fossil fuel combustion and 14% attributed to biomass burning. Furthermore, 79% of the EC was apportioned to local emissions and 21% to continental transport. The carbonaceous particle types were compared with quantitative measurements from other instruments, and while direct correlations using particle counts were poor, scaling of the ATOFMS counts greatly improved the relationship. During SAPUSS carbonaceous species, sea-salt, dust, vegetative debris and various metal-containing particle types were identified. Throughout the campaign the site was influenced by air masses altering the composition of particles detected. During North African air masses the city was heavily influenced by Saharan dust. A regional stagnation was also observed leading to a large increase in carbonaceous particle counts. While the ATOFMS provides a list of particle types present during the measurement campaigns, the data presented is not directly quantitative. The quantitative response of the ATOFMS to metals was examined by comparing the ion signals within particle mass spectra and to hourly mass concentrations of; Na, K, Ca, Ti, V, Cr, Mn, Fe, Zn and Pb. The ATOFMS was found to have varying correlations with these metals depending on sampling issues such as matrix effects. The strongest correlations were observed for Al, Fe, Zn, Mn and Pb. Overall the results of this work highlight the excellent ability of the ATOFMS in providing composition and mixing state information on atmospheric particles at high time resolution. However they also show its limitations in delivering quantitative information directly.
Resumo:
Process guidance supports users to increase their process model understanding, process execution effectiveness as well as efficiency, and process compliance performance. This paper presents a research in progress encompassing our ongoing DSR project on Process Guidance Systems and a field evaluation of the resulting artifact in cooperation with a company. Building on three theory-grounded design principles, a Process Guidance System artifact for the company’s IT service ticketing process is developed, deployed and used. Fol-lowing a multi-method approach, we plan to evaluate the artifact in a longitudinal field study. Thereby, we will not only gather self-reported but also real usage data. This article describes the development of the artifact and discusses an innovative evaluation approach.
Resumo:
Knowledge sharing typically examines organizational transfer of knowledge, often from headquarters to subsidiaries, from developed country sites to emerging country sites, or from host to local employees. Yes, recent research, such as Prahalad’s Bottom of the Pyramid, raises the question of reverse transfer of knowledge, or whether knowledge could and should be transferred from local sites to home country sites within an organization. As several emerging economies build their capabilities in knowledge, research and development, marketing, and the like, it only makes sense to consider what type of knowledge and how to transfer it in reverse or bi-directional manners. This paper takes one step back in the process. Rather than focusing on what knowledge transfer may make sense within an organization, we consider what types of knowledge are important for foreigners to know at the initial stages of engagement abroad as they consider whether to do business in an emerging country.
Resumo:
info:eu-repo/semantics/published
Resumo:
It has long been recognized that whistler-mode waves can be trapped in plasmaspheric whistler ducts which guide the waves. For nonguided cases these waves are said to be "nonducted", which is dominant for L < 1.6. Wave-particle interactions are affected by the wave being ducted or nonducted. In the field-aligned ducted case, first-order cyclotron resonance is dominant, whereas nonducted interactions open up a much wider range of energies through equatorial and off-equatorial resonance. There is conflicting information as to whether the most significant particle loss processes are driven by ducted or nonducted waves. In this study we use loss cone observations from the DEMETER and POES low-altitude satellites to focus on electron losses driven by powerful VLF communications transmitters. Both satellites confirm that there are well-defined enhancements in the flux of electrons in the drift loss cone due to ducted transmissions from the powerful transmitter with call sign NWC. Typically, ∼80% of DEMETER nighttime orbits to the east of NWC show electron flux enhancements in the drift loss cone, spanning a L range consistent with first-order cyclotron theory, and inconsistent with nonducted resonances. In contrast, ∼1% or less of nonducted transmissions originate from NPM-generated electron flux enhancements. While the waves originating from these two transmitters have been predicted to lead to similar levels of pitch angle scattering, we find that the enhancements from NPM are at least 50 times smaller than those from NWC. This suggests that lower-latitude, nonducted VLF waves are much less effective in driving radiation belt pitch angle scattering. Copyright 2010 by the American Geophysical Union.