999 resultados para Reactive Scattering
Resumo:
Rapid, quantitative SERS analysis of nicotine at ppm/ppb levels has been carried out using stable and inexpensive polymer-encapsulated Ag nanoparticles (gel-colls). The strongest nicotine band (1030 cm(-1)) was measured against d(5)-pyridine internal standard (974 cm(-1)) which was introduced during preparation of the stock gel-colls. Calibration plots of I-nic/I-pyr against the concentration of nicotine were non-linear but plotting I-nic/I-pyr against [nicotine](x) (x = 0.6-0.75, depending on the exact experimental conditions) gave linear calibrations over the range (0.1-10 ppm) with R-2 typically ca. 0.998. The RMS prediction error was found to be 0.10 ppm when the gel-colls were used for quantitative determination of unknown nicotine samples in 1-5 ppm level. The main advantages of the method are that the gel-colls constitute a highly stable and reproducible SERS medium that allows high throughput (50 sample h(-1)) measurements.
Resumo:
Incoherent Thomson scattering (ITS) provides a nonintrusive diagnostic for the determination of one-dimensional (1D) electron velocity distribution in plasmas. When the ITS spectrum is Gaussian its interpretation as a three-dimensional (3D) Maxwellian velocity distribution is straightforward. For more complex ITS line shapes derivation of the corresponding 3D velocity distribution and electron energy probability distribution function is more difficult. This article reviews current techniques and proposes an approach to making the transformation between a 1D velocity distribution and the corresponding 3D energy distribution. Previous approaches have either transformed the ITS spectra directly from a 1D distribution to a 3D or fitted two Gaussians assuming a Maxwellian or bi-Maxwellian distribution. Here, the measured ITS spectrum transformed into a 1D velocity distribution and the probability of finding a particle with speed within 0 and given value v is calculated. The differentiation of this probability function is shown to be the normalized electron velocity distribution function. (C) 2003 American Institute of Physics.
Resumo:
This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars, Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.
Resumo:
We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a few interionic separations. Comparison with radiation-hydrodynamic simulations indicates that the shocked plastic is compressed with a temperature of a few electron volts. These results are important for the understanding of the thermodynamic behavior of strongly correlated matter for conditions relevant to both laboratory astrophysics and inertial confinement fusion research.
Resumo:
The Monkstown Fe0 PRB, Europe’s oldest commercially installed PRB, had been treating trichloroethene (TCE) contaminated groundwater for about 10 years on the Nortel Network site in Northern Ireland when cores were collected in December, 2006. Groundwater data from 2001-2006 indicated that TCE is being remediated to below detection limits as the contaminated groundwater flows through the PRB, Ca and Fe carbonates, crystalline and amorphous FeS, and Fe (oxy)hydroxides precipitates are present in the Fe0 filing material within the PRB. A greater variety of minerals are associated with a 1 cm thick slightly cemented crust at the entrance of the Fe0 section of the reactive vessel and the discontinuous cemented Fe0 material directly below it. Also, a greater presence of microbial communities occurred in the upper portion of the PRB compared to the lower section which might be due to less favourable conditions (i.e. high pH, low oxygen) for microbial growth in the lower section of the PRB. Visual estimation suggests that the Fe0 filings in the effluent section of the PRB have life-span of 10+ years compared to the Fe0 filings in the thin influent section of the PRB which may have a life span of only ~2-5 more years. Multi-tracer tests indicated that preferential pathways have formed in this PRB over the 10 years of operation.
Resumo:
There is a limited amount of information about the effects of mineral precipitates and corrosion on the lifespan and long-term performance of in situ Fe° reactive barriers. The objectives of this paper are (1) to investigate mineral precipitates through an in situ permeable Fe° reactive barrier and (2) to examine the cementation and corrosion of Fe° filings in order to estimate the lifespan of this barrier. This field scale barrier (225' long x 2' wide x 31' deep) has been installed in order to remove uranium from contaminated groundwater at the Y-12 plant site, Oak Ridge, TN. According to XRD and SEM-EDX analysis of core samples recovered from the Fe° portion of the barrier, iron oxyhydroxides were found throughout, while aragonite, siderite, and FeS occurred predominantly in the shallow portion. Additionally, aragonite and FeS were present in up-gradient deeper zone where groundwater first enters the Fe° section of the barrier. After 15 months in the barrier, most of the Fe° filings in the core samples were loose, and a little corrosion of Fe° filings was observed in most of the barrier. However, larger amounts of corrosion (~10-150 µm thick corrosion rinds) occurred on cemented iron particles where groundwater first enters the barrier. Bicarbonate/ carbonate concentrations were high in this section of the barrier. Byproducts of this corrosion, iron oxyhydroxides, were the primary binding material in the cementation. Also, aragonite acted as a binding material to a lesser extent, while amorphous FeS occurred as coatings and infilings. Thin corrosion rinds (2-50 µm thick) were also found on the uncemented individual Fe° filings in the same area of the cementation. If corrosion continues, the estimated lifespan of Fe° filings in the more corroded sections is 5 to 10 years, while the Fe° filings in the rest of the barrier perhaps would last longer than 15 years. The mineral precipitates on the Fe° filing surfaces may hinder this corrosion but they may also decrease reactive surfaces. This research shows that precipitation will vary across a single reactive barrier and that greater corrosion and subsequent cementation of the filings may occur where groundwater first enters the Fe° section of the barrier.
Resumo:
We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca2+](cyt) gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca2+](cyt) gradient. Such modulation of intracellular [Ca2+](cyt) signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.