987 resultados para Rare earth ions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We observed that the SrMg2(PO4)(2):Eu phosphor could emit long life phosphorescence with the excitation light whose wavelength was shorter than 420 nm, however, when La, Ce, or Gd was codoped, the wavelength of the excitation light to cause the phosphorescence had a redshift of 40 nm. A possible mechanism and related discussion for this redshift phenomenon of the excitation light was given. It was suggested that the threshold between the trap and valence band was decreased with the addition of the codopants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a method for estimating the positions of charge transfer (CT) bands in Eu3+-doped complex crystals. The environmental factor ( he) influencing the CT energy is presented. he consists of four chemical bond parameters: the covalency, the bond volume polarization, the presented charge of the ligand in the chemical bond, and the coordination number of the central ion. These parameters are calculated with the dielectric theory of complex crystals. The relationship between the experimental CT energies and calculated environmental factors was established by an empirical formula. The calculated values are in good agreement with the experimental results. Such a relationship was confirmed by detailed analysis. In addition, our method is also useful to predict the charge-transfer position of any other rare earth ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LaPO4: Ce3+ and LaPO4: Ce3+, Tb3+ phosphor layers have been deposited successfully on monodispersed and spherical SiO2 particles of different sizes ( 300, 500, 900 and 1200 nm) through a sol - gel process, resulting in the formation of core - shell structured SiO2@ LaPO4: Ce3+/ Tb3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microcopy (SEM), transmission electron microscopy (TEM), and general and time-resolved photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO2@ LaPO4: Ce3+/ Tb3+ samples. The XRD results demonstrate that the LaPO4: Ce3+, Tb3+ layers begin to crystallize on the SiO2 templates after annealing at 700 degrees C, and the crystallinity increases on raising the annealing temperature. The obtained core - shell phosphors have perfectly spherical shape with a narrow size distribution, non-agglomeration, and a smooth surface. The doped rare-earth ions show their characteristic emission in the core - shell phosphors, i.e. Ce3+ 5d - 4f and Tb3+5D4 - F-7(J) (J = 6 - 3) transitions, respectively. The PL intensity of the Tb3+ increased on increasing the annealing temperature and the SiO2 core particle size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Y2O3:RE3+ (RE = Eu, Tb, Dy) porous nanotubes were first synthesized using carbon nanotubes as template. The morphology of the coated precursors and porous Y2O3:Eu3+ nanotubes was determined by scanning electron Microscopy (SEM) and transmission electron microscopy (TEM). It was found that the coating of precursors on carbon nanotubes (CNTs) is continuous and the thickness is about 15 nm, after calcinated, the Y2O3:Eu3+ nanotubes are porous with the diameter size in the range of 50-80 nm and the length in micrometer scale. X-ray diffraction (XRD) patterns confirmed that the samples are cubic phase Y2O3 and the photoluminescence studies showed that the porous rare earth ions doped nanotubes possess characteristic emission of Eu3+, Tb3+, and Dy3+. This method may also provide a novel approach to produce other inorganic porous nanotubes used in catalyst and sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium lanthanide oxyborate doped with rare-earth ions LnCa(4)O(BO3)(3):RE3+ (LnCOB:RE, Ln = Y, La, Gd, RE = Eu, Tb, Dy, Cc) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos' and J phi rgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. J phi rgensen. Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band E-ct were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd ions transfer the energy from itself to Dy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase transition of BaNd2Mn2O7 from orthorhombic (space group Fmmm) to tetragonal phase (I4/mmm) was studied by high temperature powder X-ray diffractometry and Rietveld analysis. The transition temperature was identified at 523 K, which is almost the same transition temperature as the compounds with other rare earth ions in this BaLn(2)Mn(2)O(7) family (Ln=Sm and Eu) with Fmmm space group. During the transition an oxygen octahedron of each phase changes a little its form, in which four oxygen atoms perpendicular to C-axis make a rectangle and a square for orthorhombic and tetragonal phases, respectively. Manganese ion is not on the center of the quadrilateral consisting of these four oxygen ions, but a little apart from the center along c-axis in both phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare-earth ion (Eu3+, Tb3+, Ce3+)- doped LaPO4 nanocrystalline thin films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography on silicon and silica glass substrates. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), scanning electron microcopy (SEM), optical microscopy, absorption and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicate that the films begin to crystallize at 700 degreesC and the crystallinity increases with increasing annealing temperature. The morphology of the thin film depends on the annealing temperature and the number of coating layers. The 1000 degreesC annealed single layer film is transparent to the naked eye, uniform and crack-free with a thickness of about 200 nm and an average grain size of 100 nm. Patterned thin films with different strip widths ( 5 - 50 mm) were obtained by micromolding in capillaries ( soft lithography). The doped rare earth ions show their characteristic emission in the nanocrystalline LaPO4 films, i.e., Eu3+ D-5(0)-F-7(J) (J = 1, 2, 3, 4), Tb3+ D-5(3,4) - F-7(J) ( J = 6, 5, 4, 3, 2) and Ce3+ 5d-4f transition emissions, respectively. Both the lifetimes and the PL intensities of Eu3+ and Tb3+ increase with increasing annealing temperature, and the optimum concentrations for them were determined to be 5 mol% and 16 mol% of La3+ in LaPO4 thin films, respectively. An energy transfer phenomenon from Ce3+ to Tb3+ has been observed in LaPO4 nanocrystalline thin films, and the energy transfer efficiency depends on the doping concentration of Tb3+ if the concentration of Ce3+ is fixed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicate oxyapatite La-9.33 (SiO6)(4)O-2:A (A = Eu3+, Tb3+ and/or Ce3+) phosphor films and their patterning were fabricated by a sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, atomic force microscopy, optical microscopy and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800degreesC and the crystallinity increased with the increase in annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of rodlike grains with a size between 150 and 210 nm. Patterned thin films with different bandwidths (20, 50 mum) were obtained by the micromoulding in capillaries technique. The doped rare earth ions (Eu3+, Tb3+ and Ce3+) showed their characteristic emission in crystalline La-9.33(SiO6)(4)O-2 phosphor films, i.e. Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+ D-5(3,4)-F-7(J) (J = 3, 4, 5, 6) and Ce3+ 5d (D-2)-4f (F-2(2/5), F-2(2/7)) emissions, respectively. Both the lifetimes and PL intensity of the Eu3+, Tb3+ ions increased with increasing annealing temperature from 800 to 1100 degreesC, and the optimum concentrations for Eu3+, Tb3+ were determined to be 9 and 7 mol% of La3+ in La-9.33(SiO6)(4)O-2 films, respectively. An energy transfer from Ce3+ to Tb3+ was observed in the La-9.33(SiO6)(4)O-2:Ce, Tb phosphor films, and the energy transfer efficiency was estimated as a function of Tb3+ concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin film phosphors with compositions of RP1-xVxO4: A (R = Y, Gd, La; A = Sm3+, Et3+; x = 0, 0.5, 1) have been prepared by a Pechini sol-gel process. X-Ray diffraction, atomic force microscopy (AFM), photoluminescence excitation and emission spectra were utilized to characterize the thin film phosphors. The results of XRD showed that a solid solution formed in YVxP1-xO4: A film series from x = 0 to x = 1 with zircon structure, which also held for GdVO4: A film. However, LaVO4: A film crystallized with a different structure, monazite. AFM study revealed that the phosphor films consisted of homogeneous particles ranging from 90 to 400 nm depending on the compositions. Upon short ultraviolet excitation, the films exhibit the characteristic Sm(3+ 4)G(5/2)-H-6(J) (J=5/2, 7/2, 9/2) emission in the red region and Er3+ H-2(11/2), S-4(3/2)-I-4(15/2) emission in the green region, respectively With the increase of x values in YVxP1-xO4: SM3+ (Er3+) films, the emission intensity Of SM3+ (Er3+) increases due to the increase of energy transfer probability from VO43- to Sm3+ (Er3+). Due to the structural effects, the Sm3+ (Er3+) shows similar spectral properties in YVO4 and GdVO4 films, which are much different from those in LaVO4 film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Gd2O3:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and that the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained by optimizing the composition of the coating sol, which mainly consisted of grains with an average size of 70 nm and a thickness of 550 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline Gd2O3 phosphor films due to an efficient energy transfer from Gd2O3 host to them. Both the lifetimes and PL intensity of the rare earth ions increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+, Dy3+, sm(3+), Er3+ were determined to be 5, 0.25, 1 and 1.5 mol% of Gd3+ in Gd2O3 films, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The luminescence properties of Ce3+ and Tb3+ in Y3Si2O8Cl have been investigated. The Ce3+ excitation bands in the region from 220 to 360 run are attributed to the transitions from 4f level to the crystal-field splitting levels of 5d.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LB films of 4-hexadecyloxybenzoic-terbium by using the subphase containing Tb3+ were prepared. The monolayer behavior of 4-hexadecyloxybenzoic acid (HOBA) on the subphase containing rare earth ions was studied. IR and UV spectra show that the rare earth ions were bound to carboxylic acid head groups and the coordination took place between the polar head group and the rare earth ions. The luminescence spectra show that the LB films have the fine luminescence properties, and the LB films emit strong luminescence under UV light irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP) and triisobutylphosphine sulphide (TIBPS, B) is investigated in the extraction of lanthanum(III) from chloride solution. Lanthanum(III) is extracted by the mixture as LaCl2.PMBP.B-0.5 instead of La(PMBP)(3).(HPMBP) which is extracted by HPMBP alone. The equilibrium constants and thermodynamic functions such as DeltaG, DeltaH and DeltaS are determined. The extraction of other rare earth ions by mixtures of HPMBP and TIBPS is also studied and the possibility of separating rare earth ions is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid materials, containing in-situ synthesized lanthanide complexes with intense green light, have been prepared via sol-gel process. The luminescence properties and the decay times of as-synthesized samples were investigated. The excitation spectrum of the samples indicates the formation of complexes between terbium (III) and P-Sulfosalicylic acid. The hybrid materials that contain in-situ synthesized terbium complexes exhibit the characteristic emission bands of the rare earth ions. In addition, the effect of concentration of terbium on the luminescence properties as well as the thermal stability were also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using metal nitrates and oxides as the starting materials, Y2Al5O12 (YAG) and YAG:Re3+ (Re = Ce, Sm, Th) powder phosphors were prepared by solid-state (SS), coprecipitation (CP) and citrate gel (CG) methods. The resulting YAG and YAG-based phosphors were characterized by XRD, FT-IR, SEM and photoluminescent excitation and emission spectra. The purified crystalline phases of YAG were obtained at 800 degreesC (CG) and 900 degreesC (CP, SS). At an identical annealing temperature and doping concentration, the doped rare-earth ions showed the stronger emission intensity in the CP- and SS-derived phosphors than the CG-derived YAG phosphors. The poor emission intensity for the CG-derived phosphors is mainly caused by the contamination of carbon impurities from citric acid in the starting materials.