923 resultados para Raman spectroscopy and scattering
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work, plasma immersion ion implantation (PIII) treatments of carbon fibers (CFs) were performed in order to induce modifications of chemical and physical properties of the CF surface aimed to improve the performance of thermoplastic composite. The samples to be treated were immersed in nitrogen or air glow discharge plasma and pulsed at −3.0 kV for 2.0, 5.0, 10.0, and 15.0 min. After PIII processing, the specimens were characterized by atomic force microscopy (AFM), scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). After CFs treatments, the CF/Polypropylene (PP) composites were produced by hot pressing method. Surface morphology of as-received CFs exhibited some scratches aligned along the fibers due to the fiber manufacturing process. After both treatments, these features became deeper, and also, a number of small particles nonuniformly distributed on the fiber surface can be observed. These particles are product of CF surface sputtering during the PIII treatment, which removes the epoxy layer that covers as-received samples. AFM analyses of CF samples treated with nitrogen depicted a large increase of the surface roughness (Rrms value approximately six times higher than that of the untreated sample). The increase of the roughness was also observed for samples treated by air PIII. Raman spectra of all samples presented the characteristic D- and G-bands at approximately 1355 and 1582 cm−1, respectively. Analysis of the surface chemical composition provided by the XPS showed that nitrogen and oxygen were incorporated onto the surface. The polar radicals formed on the surface lead to increasing of the CF surface energy. Both the modification of surface roughness and the surface oxidation contributed for the enhancement of CF adhesion to the polymeric matrix. These features were confirmed ... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Synthacaine is a New Psychoactive Substance which is, due to its inherent psychoactive properties, reported to imitate the effects of cocaine and is therefore consequently branded as legal cocaine. The only analytical approach reported to date for the sensing of Synthacaine is mass spectrometry. In this paper, we explore and evaluate a range of potential analytical techniques for its quantification and potential use in the field screening Synthacaine using Raman spectroscopy, presumptive (colour) testing, High Performance Liquid Chromatography (HPLC) and electrochemistry. HPLC analysis of street samples reveals that Synthacaine comprises a mixture of methiopropamine (MPA) and 2-aminoindane (2-AI). Raman spectroscopy and presumptive (colour) tests, the Marquis, Mandelin, Simon's and Robadope test, are evaluated towards a potential in-the-field screening approach but are found to not be able to discriminate between the two when they are both present in the same sample, as is the case in the real street samples. We report for the first time a novel indirect electrochemical protocol for the sensing of MPA and 2-AI which is independently validated in street samples with HPLC. This novel electrochemical approach based upon one-shot disposable cost effective screen-printed graphite macroelectrodes holds potential for in-the-field screening for Synthacaine.
Resumo:
In this work, crystalline titanium dioxide (TiO2) nanoparticles with variable average crystallite sizes (e.g., 8 nm) and surface areas (e.g., 192 m² g-1) were synthesized in pure anatase phase using H2O2 to reduce the hydrolysis rate of the titanium ions. An isopropanol (IP) solution was employed as the reaction medium. The TiO2 nanoparticles were characterized by powder X-ray diffraction analysis (XRD), Raman spectroscopy and transmission electron microscopy (TEM). By changing the synthesis parameters it was possible to control nanoparticle size and avoid the coalescence process. A dependence of the Raman wavenumber on the nanocrystal sizes was determined, which is quite useful for a quick check of the size of TiO2 nanocrystals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper reports on the advancement of magnetic ionic liquids (MILs) as stable dispersions of surface-modified gamma-Fe2O3, Fe3O4, and CoFe2O4 magnetic nanoparticles (MNPs) in a hydrophobic ionic liquid, 1-n-butyl 3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). The MNPs were obtained via coprecipitation and were characterized using powder X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy, and magnetic measurements. The surface-modified MNPs (SM-MNPs) were obtained via the silanization of the MNPs with the aid of 1-butyl-3[3-(trimethoxysilyl)propyl]imidazolium chloride (BMSPI.Cl). The SM-MNPs were characterized by Raman spectroscopy and Fourier trail: form infrared attenuated total reflectance (FTIR-ATR) spectroscopy and by magnetic measurements. The FTIR-ATR spectra of the SM-MNPs exhibited characteristic absorptions of the imidazolium and those of the Fe-O-Si-C moieties, confirming the presence of BMSPI.Cl on the MNP surface. Thermogravimetric analysis (TGA) showed that the SM-MNPs were modified by at least one BMSPI.Cl monolayer. The MILs were characterized using Raman spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The Raman and DSC results indicated an interaction between the SM-MNPs and the IL. This interaction promotes the formation of a supramolecular structure close to the MNP surface that mimics the IL structure and is responsible for the stability of the MIL. Magnetic measurements of the MILs indicated no hysteresis. Superparamagnetic behavior and a saturation magnetization of similar to 22 emu/g could be inferred from the magnetic measurements of a sample containing 50% w/w gamma-Fe2O3 SM-MNP/BMI-NTf2.