978 resultados para Radiotherapy, Image-Guided


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ideally, one would like to perform image search using an intuitive and friendly approach. Many existing image search engines, however, present users with sets of images arranged in some default order on the screen, typically the relevance to a query, only. While this certainly has its advantages, arguably, a more flexible and intuitive way would be to sort images into arbitrary structures such as grids, hierarchies, or spheres so that images that are visually or semantically alike are placed together. This paper focuses on designing such a navigation system for image browsers. This is a challenging task because arbitrary layout structure makes it difficult - if not impossible - to compute cross-similarities between images and structure coordinates, the main ingredient of traditional layouting approaches. For this reason, we resort to a recently developed machine learning technique: kernelized sorting. It is a general technique for matching pairs of objects from different domains without requiring cross-domain similarity measures and hence elegantly allows sorting images into arbitrary structures. Moreover, we extend it so that some images can be preselected for instance forming the tip of the hierarchy allowing to subsequently navigate through the search results in the lower levels in an intuitive way. Copyright 2010 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved particle image velocimetry (PIV) has been performed inside the nozzle of a commercially available inkjet print-head to obtain the time-dependent velocity waveform. A printhead with a single transparent nozzle 80 μm in orifice diameter was used to eject single droplets at a speed of 5 m/s. An optical microscope was used with an ultra-high-speed camera to capture the motion of particles suspended in a transparent liquid at the center of the nozzle and above the fluid meniscus at a rate of half a million frames per second. Time-resolved velocity fields were obtained from a fluid layer approximately 200 μm thick within the nozzle for a complete jetting cycle. A Lagrangian finite-element numerical model with experimental measurements as inputs was used to predict the meniscus movement. The model predictions showed good agreement with the experimental results. This work provides the first experimental verification of physical models and numerical simulations of flows within a drop-on-demand nozzle. © 2012 Society for Imaging Science and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present quantitative analysis of the ultra-high photoconductivity in amorphous oxide semiconductor (AOS) thin film transistors (TFTs), taking into account the sub-gap optical absorption in oxygen deficiency defects. We analyze the basis of photoconductivity in AOSs, explained in terms of the extended electron lifetime due to retarded recombination as a result of hole localization. Also, photoconductive gain in AOS photo-TFTs can be maximized by reducing the transit time associated with short channel lengths, making device scaling favourable for high sensitivity operation. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmonic enhanced Schottky detectors operating on the basis of the internal photoemission process are becoming an attractive choice for detecting photons with sub bandgap energy. Yet, the quantum efficiency of these detectors appears to be low compare to the more conventional detectors which are based on interband transitions in a semiconductor. Hereby we provide a theoretical model to predict the quantum efficiency of guided mode internal photoemission photodetector with focus on the platform of silicon plasmonics. The model is supported by numerical simulations and comparison to experimental results. Finally, we discuss approaches for further enhancement of the quantum efficiency.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach of rapid hologram generation for the realistic three-dimensional (3-D) image reconstruction based on the angular tiling concept is proposed, using a new graphic rendering approach integrated with a previously developed layer-based method for hologram calculation. A 3-D object is simplified as layered cross-sectional images perpendicular to a chosen viewing direction, and our graphics rendering approach allows the incorporation of clear depth cues, occlusion, and shading in the generated holograms for angular tiling. The combination of these techniques together with parallel computing reduces the computation time of a single-view hologram for a 3-D image of extended graphics array resolution to 176 ms using a single consumer graphics processing unit card. © 2014 SPIE and IS and T.