996 resultados para Radioal velocities


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data are presented from the EISCAT (European Incoherent Scatter (Facility)) CP-3-E experiment which show large increases in the auroral zone convection velocities (>2 km s−1) over a wide range of latitudes. These are larger than the estimated neutral thermal speed and allow a study of the plasma in a nonthermal state over a range of observing angles. Spectra are presented which show a well-defined central peak, consistent with an ion velocity distribution function which significantly departs from a Maxwellian form. As the aspect angle decreases, the central peak becomes less obvious. Simulated spectra, derived using theoretical expressions for the O+ ion velocity distribution function based on the generalized relaxation collision model, are compared with the observations and show good first-order, qualitative agreement. It is shown that ion temperatures derived from the observations, with the assumption of a Maxwellian distribution function, are an overestimate of the true ion temperature at large aspect angles and an underestimate at low aspect angles. The theoretical distribution functions have been included in the “standard” incoherent scatter radar analysis procedure, and attempts have been made to derive realistic ionospheric parameters from nonthermal plasma observations. If the expressions for the distribution function are extended to include mixed ion composition, a significant improvement is found in fitting some of the observed spectra, and estimates of the ion composition can be made. The non-Maxwellian analysis of the data revealed that the spectral shape distortion parameter, D*, was significantly higher in this case for molecular ions than for atomic ions in a thin height slab roughly 40 km thick. This would seem unlikely if the main molecular ions present were NO+. We therefore suggest that N2+ formed a significant proportion of the molecular ions present during these observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calculations using a numerical model of the convection dominated high latitude ionosphere are compared with observations made by EISCAT as part of the UK-POLAR Special Programme. The data used were for 24–25 October 1984, which was characterized by an unusually steady IMF, with Bz < 0 and By > 0; in the calculations it was assumed that a steady IMF implies steady convection conditions. Using the electric field models of Heppner and Maynard (1983) appropriate to By > 0 and precipitation data taken from Spiroet al. (1982), we calculated the velocities and electron densities appropriate to the EISCAT observations. Many of the general features of the velocity data were reproduced by the model. In particular, the phasing of the change from eastward to westward flow in the vicinity of the Harang discontinuity, flows near the dayside throat and a region of slow flow at higher latitudes near dusk were well reproduced. In the afternoon sector modelled velocity values were significantly less than those observed. Electron density calculations showed good agreement with EISCAT observations near the F-peak, but compared poorly with observations near 211 km. In both cases, the greatest disagreement occurred in the early part of the observations, where the convection pattern was poorly known and showed some evidence of long term temporal change. Possible causes for the disagreement between observations and calculations are discussed and shown to raise interesting and, as yet, unresolved questions concerning the interpretation of the data. For the data set used, the late afternoon dip in electron density observed near the F-peak and interpreted as the signature of the mid-latitude trough is well reproduced by the calculations. Calculations indicate that it does not arise from long residence times of plasma on the nightside, but is the signature of a gap between two major ionization sources, viz. photoionization and particle precipitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data recorded by the POLAR experiment run on the EISCAT radar during the international GISMOS campaign of 3–5 June 1987 are studied in detail. The polar-cap boundary, as denned by an almost shear East-West convection reversal, was observed to jump southward across the EISCAT field of view in two steps at 02:00 and 03:00 Magnetic Local Time and subsequently to contract back between 04:00 and 07:00 M.L.T. An annulus of enhanced ion temperature and non-thermal plasma was observed immediately equatorward of the contracting boundary due to the lag in the response of the neutral-wind pattern to the change in ion flows. The ion flow at the boundary is shown to be relatively smooth at 15 s resolution and directed northward, with velocities which exceed that of the boundary itself. The effect of velocity shears on the beamswinging technique used to derive the ion flows is analyzed in detail and it is shown that, for certain orientations of the cap boundary, spurious flows into the cap can be generated. However, these are much smaller than the observed flows into the polar cap and cannot explain the potential difference across the observed segment of the cap boundary (extending over 2 h of M.L.T.) which is roughly 7 kV. Similarly, an observed slowing of the zonal flow near the boundary cannot be explained as an error introduced by the use of the beamswinging technique. The results could be interpreted as being due to reconnection occurring on the dawn flank of the magnetopause (mapping to the polar cap at 04:30 06:30 M.L.T.). However, they are more consistent with recent observations of slow anti-sunward flow of closed field lines on the flanks of the geomagnetic tail, which appears to be generated by some form of “viscous” coupling to the magnetosheath plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of flux transfer events (FTE) on the dayside auroral ionosphere are studied, using a simple twin-vortex model of induced ionospheric plasma flow. It is shown that the predicted and observed velocities of these flows are sufficient to drive nonthermal plasma in the F region, not only within the newly opened flux tube of the FTE, but also on the closed, or "old" open, field lines around it. In fact, with the expected poleward neutral wind, the plasma is more highly nonthermal on the flanks of, but outside, the open flux tube: EISCAT observations indicate that plasma is indeed driven into nonthermal distributions in these regions. The nonthermal plasma is thereby subject to additional upforce due to the resulting ion temperature anisotropy and transient expansion due to Joule heating and also to ion accelerations associated with the FTE field aligned current system. Any upflows produced on closed field lines in the vicinity of the FTE are effectively bunched-up in the "wake" of the FTE. Observations from the AMPTE-UKS satellite at the magnetopause reveal ion upflows of energy ∼100 eV flowing out from the ionosphere on closed field lines which are only found in the wake of the FTE. Such flows are also only found shortly after two, out of all the FTEs observed by AMPTE-UKS. The outflow from the ionosphere is two orders of magnitude greater than predicted for the "classical" polar wind. It is shown that such ionospheric ion flows are only expected in association with FTEs on the magnetopause which are well removed from the sub-solar point-either towards dusk or, as in the UKS example discussed here, towards dawn. It is suggested that such ionospheric ions will only be observed if the center of the FTE open flux tube passes very close to the satellite. Consequently, we conclude the ion upflows presented here are probably driven by the second of two possible source FTEs and are observed at the satellite with a lag after the FTE which is less than their time-of-flight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three rapid, poleward bursts of plasma flow, observed by the U.K.-POLAR EISCAT experiment, are studied in detail. In all three cases the large ion velocities (> 1 kms−1) are shown to drive the ion velocity distribution into a non-Maxwellian form, identified by the characteristic shape of the observed spectra and the fact that analysis of the spectra with the assumption of a Maxwellian distribution leads to excessive rises in apparent ion temperature, and an anticorrelation of apparent electron and ion temperatures. For all three periods the total scattered power is shown to rise with apparent ion temperature by up to 6 dB more than is expected for an isotropic Maxwellian plasma of constant density and by an even larger factor than that expected for non-thermal plasma. The anomalous increases in power are only observed at the lower altitudes (< 300 km). At greater altitudes the rise in power is roughly consistent with that simulated numerically for homogeneous, anisotropic, non-Maxwellian plasma of constant density, viewed using the U.K.-POLAR aspect angle. The spectra at times of anomalously high power are found to be asymmetric, showing an enhancement near the downward Doppler-shifted ion-acoustic frequency. Although it is not possible to eliminate completely rapid plasma density fluctuations as a cause of these power increases, such effects cannot explain the observed spectra and the correlation of power and apparent ion temperature without an unlikely set of coincidences. The observations are made along a beam direction which is as much as 16.5° from orthogonality with the geomagnetic field. Nevertheless, some form of coherent-like echo contamination of the incoherent scatter spectrum is the most satisfactory explanation of these data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent observations with the EISCAT incoherent scatter radar have shown large rises in dayside, auroral plasma velocities (>2 km s^{−1}) over a wide range of latitudes and lasting about an hour. These are larger than the neutral thermal speed, and allow, for the first time, observations of a non-thermal plasma over a range of observing angles, revealing a clear angular dependence. The observed ion temperature anisotropy, deduced by assuming a Maxwellian line-of-sight ion velocity distribution, is at least 1.75, which exceeds the theoretical value for a bi-Maxwellian based on a realistic ion-neutral collision model. The aspect angle dependence of the signal spectra also indicates non-Maxwellian plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A global, time-dependent, three-dimensional, coupled ionosphere-thermosphere model is used to predict the spatial distribution of non-thermal plasma in the F-layer. It is shown that, even for steady-state conditions with Kp as low as 3, the difference between the ion and neutral velocities often exceeds the neutral thermal speed by a factor, D', which can be as large as 4. Theoretically, highly non-Maxwellian, and probably toroidal, ion velocity distributions are expected when D' exceeds about 1.5. The lack of response of the neutral winds to sunward ion drifts in the dawn sector of the auroral oval cause this to be the region most likely to contain toroidal distributions. The maximum in D' is found in the throat region of the convection pattern, where the strong neutral winds of the afternoon sector meet the eastward ion flows of the morning sector. These predictions are of interest, not only to radar scientists searching for non-thermal ionospheric plasma, but also as one possible explanation of the initial heating and upward flows of ions in the cleft ion fountain and nightside auroral oval, both of which are a major source of plasma for the magnetosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data from the Dynamics Explorer 1 satellite and the EISCAT and Sondrestrom incoherent scatter radars, have allowed a study of low-energy ion outflows from the ionosphere into the magnetosphere during a rapid expansion of the polar cap. From the combined radar data, a 200kV increase in cross-cap potential is estimated. The upflowing ions show “X” signatures in the pitch angle-time spectrograms in the expanding midnight sector of the auroral oval. These signatures reveal low-energy (below about 60eV), light-ion beams sandwiched between two regions of ion conics and are associated with inverted-V electron precipitation. The lack of mass dispersion of the poleward edge of the event, despite great differences in the times of flight, reflects the equatorward expansion of the acceleration regions at velocities similar to those of the antisunward convection. In addition, a transient burst of upflow of 0+ is observed within the cap, possibly due to enhanced Joule heating during the event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of a prolonged period of strongly northward Interplanetary Magnetic Field (IMF) on the high-latitude F-region is studied using data from the EISCAT Common Programme Zero mode of operation on 11–12 August 1982. The analysis of the raw autocorrelation functions is kept to the directly derived parameters Ne, Te, Ti and velocity, and limits are defined for the errors introduced by assumptions about ion composition and by changes in the transmitted power and system constant. Simple data-cleaning criteria are employed to eliminate problems due to coherent signals and large background noise levels. The observed variations in plasma densities, temperatures and velocities are interpreted in terms of supporting data from ISEE-3 and local riometers and magnetometers. Both field-aligned and field-perpendicular plasma flows at Tromsø showed effects of the northward IMF: convection was slow and irregular and field-aligned flow profiles were characteristic of steady-state polar wind outflow with flux of order 1012 m−2 s−1. This period followed a strongly southward IMF which had triggered a substorm. The substorm gave enhanced convection, with a swing to equatorward flow and large (5 × 1012 m−2 s−1), steady-state field-aligned fluxes, leading to the possibility of O+ escape into the magnetosphere. The apparent influence of the IMF over both field-perpendicular and field-aligned flows is explained in terms of the cross-cap potential difference and the location of the auroral oval.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents an evaluation of the size and strength of convective updraughts in high-resolution simulations by the UK Met Office Unified Model (UM). Updraught velocities have been estimated from range–height indicator (RHI) Doppler velocity measurements using the Chilbolton advanced meteorological radar, as part of the Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project. Based on mass continuity and the vertical integration of the observed radial convergence, vertical velocities tend to be underestimated for convective clouds due to the undetected cross-radial convergence. Velocity fields from the UM at a resolution corresponding to the radar observations are used to scale such estimates to mitigate the inherent biases. The analysis of more than 100 observed and simulated storms indicates that the horizontal scale of updraughts in simulations tend to decrease with grid length; the 200 m grid length agreed most closely with the observations. Typical updraught mass fluxes in the 500 m grid length simulations were up to an order of magnitude greater than observed, and greater still in the 1.5 km grid length simulations. The effect of increasing the mixing length in the sub-grid turbulence scheme depends on the grid length. For the 1.5 km simulations, updraughts were weakened though their horizontal scale remained largely unchanged. Progressively more so for the sub-kilometre grid lengths, updraughts were broadened and intensified; horizontal scale was now determined by the mixing length rather than the grid length. In general, simulated updraughts were found to weaken too quickly with height. The findings were supported by the analysis of the widths of reflectivity patterns in both the simulations and observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first size-resolved airborne measurements of dust fluxes and the first dust flux measurements from the central Sahara are presented and compared with a parameterization by Kok (2011a). High-frequency measurements of dust size distribution were obtained from 0.16 to 300 µm diameter, and eddy covariance fluxes were derived. This is more than an order of magnitude larger size range than previous flux estimates. Links to surface emission are provided by analysis of particle drift velocities. Number flux is described by a −2 power law between 1 and 144 µm diameter, significantly larger than the 12 µm upper limit suggested by Kok (2011a). For small particles, the deviation from a power law varies with terrain type and the large size cutoff is correlated with atmospheric vertical turbulent kinetic energy, suggesting control by vertical transport rather than emission processes. The measured mass flux mode is in the range 30–100 µm. The turbulent scales important for dust flux are from 0.1 km to 1–10 km. The upper scale increases during the morning as boundary layer depth and eddy size increase. All locations where large dust fluxes were measured had large topographical variations. These features are often linked with highly erodible surface features, such as wadis or dunes. We also hypothesize that upslope flow and flow separation over such features enhance the dust flux by transporting large particles out of the saltation layer. The tendency to locate surface flux measurements in open, flat terrain means these favored dust sources have been neglected in previous studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The question is addressed whether using unbalanced updates in ocean-data assimilation schemes for seasonal forecasting systems can result in a relatively poor simulation of zonal currents. An assimilation scheme, where temperature observations are used for updating only the density field, is compared to a scheme where updates of density field and zonal velocities are related by geostrophic balance. This is done for an equatorial linear shallow-water model. It is found that equatorial zonal velocities can be detoriated if velocity is not updated in the assimilation procedure. Adding balanced updates to the zonal velocity is shown to be a simple remedy for the shallow-water model. Next, optimal interpolation (OI) schemes with balanced updates of the zonal velocity are implemented in two ocean general circulation models. First tests indicate a beneficial impact on equatorial upper-ocean zonal currents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variability and trends in seasonal and interannual ice area export out of the Laptev Sea between 1992 and 2011 are investigated using satellite-based sea ice drift and concentration data. We found an average total winter (Octo- ber to May) ice area transport across the northern and east- ern Laptev Sea boundaries (NB and EB) of 3.48 × 10 5 km 2 . The average transport across the NB (2.87 × 10 5 km 2 ) is thereby higher than across the EB (0.61 × 10 5 km 2 ), with a less pronounced seasonal cycle. The total Laptev Sea ice area flux significantly increased over the last decades (0.85 × 10 5 km 2 decade − 1 , p> 0 . 95), dominated by increas- ing export through the EB (0.55 × 10 5 km 2 decade − 1 , p> 0 . 90), while the increase in export across the NB is smaller (0.3 × 10 5 km 2 decade − 1 ) and statistically not significant. The strong coupling between across-boundary SLP gradient and ice drift velocity indicates that monthly variations in ice area flux are primarily controlled by changes in geostrophic wind velocities, although the Laptev Sea ice circulation shows no clear relationship with large-scale atmospheric in- dices. Also there is no evidence of increasing wind velocities that could explain the overall positive trends in ice export. The increased transport rates are rather the consequence of a changing ice cover such as thinning and/or a decrease in con- centration. The use of a back-propagation method revealed that most of the ice that is incorporated into the Transpolar Drift is formed during freeze-up and originates from the cen- tral and western part of the Laptev Sea, while the exchange with the East Siberian Sea is dominated by ice coming from the central and southeastern Laptev Sea. Furthermore, our re- sults imply that years of high ice export in late winter (Febru- ary to May) have a thinning effect on the ice cover, which in turn preconditions the occurence of negative sea ice extent anomalies in summer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between 1995 and 2000, on average 4 eddies per year are observed from satellite altimetry to propagate southward through the Mozambique Channel, into the upstream Agulhas region. Further south, these eddies have been found to control the timing and frequenc yof Agulhas ring shedding. Within the Mozambique Channel, anomalous SSH amplitudes rise to 30 cm ; in agreement with in situ measured velocities. Comparison of an observed velocit ysection with GCM model results shows that the Mozambique Channel eddies in these models are too surface intensified. Also, the number of eddies formed in the models is in disagreement with our observational analysis. Moored current meter measurements observing the passage of three eddies in 2000 are extended to a 5-year time series b yreferencing the anomalous surface currents estimated from altimeter data to a s ynoptic LADCP velocit y measurement. The results show intermittent edd ypassage at the mooring location. A statistical analysis of SSH observations in different parts of the Mozambique Channel shows a southward decrease of the dominant frequency of the variability, going from 7 per year in the extension of the South Equatorial Current north of Madagascar to 4 per year south of Madagascar. The observations suggest that frequency reduction is related to the Rossb ywaves coming in from the east

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demand for good indoor air quality is increasing as people recorgnise the risks to their health and productivity from indoor pollutants. There is a tendency to reduce ventilation rates to ensure energy conservation in buildings; in this instance schools. However, evidence reviewed shows that this can be detrimental to health and wellbeing in schools because of the learner density within a small area (1.8 - 2.4m2/person); eventually indicating that carbon dioxide (CO2) levels can rise to very high levels in classroom occupancy periods. A preliminary study to investigate the impact of indoor environmental parameters has been performed in a secondary school classroom in Pretoria, South Africa. Factors monitored include temperature, relative humidity, lighting, air velocities and CO2 concentrations. From the results low air velocities are recorded (i.e. 0.1-0.3m/s) impacting on the retention of CO2 build-up in the classroom. Results presented in this paper are the initial findings of ongoing research.