981 resultados para RP92-217 No. 19


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the distribution of total selenium (Se) and of the proportion of total Se comprised as the selenized amino acids selenomethionine (SeMet) and selenocysteine (SeCys) within the post mortem tissues of lambs that were fed high dose selenized enriched yeast (SY), derived from a specific strain of Saccharomyces cerevisae CNCM (Collection Nationale de Culture de Micro-organism) I-3060. Thirty two Texel X Suffolk lambs (6.87 ± 0.23 kg BW) were offered both reconstituted milk replacer and a pelleted diet, both of which had been either supplemented with high SY (6.30 ± 0.18 mg Se/kg DM) or unsupplemented (0.13 ± 0.01 mg Se/kg of DM), depending on treatment designation, for a continuous period of 91 d. At enrollment and 28, 56 and 91 d following enrollment lambs were blood sampled. At the completion of the treatment period, five lambs from each treatment group were euthanased and samples of heart, liver, kidney and skeletal muscle (Longissimus Dorsi and Psoas Major) were retained for Se analysis. The inclusion of high SY increased (P < 0.001) whole blood Se concentration, reaching a maximum mean value of 815.2 ± 19.1 ng Se/mL compared with 217.8 ± 9.1 ng Se/mL in control animals. Tissue total Se concentrations were significantly (P < 0.001) higher in SY supplemented animals than in controls irrespective of tissue type; values were 26, 16, 8 and 3 times higher in skeletal muscle, liver, heart and kidney tissue of HSY lambs when compared to controls. however, the distribution of total Se and the proportions of total Se comprised as either SeMet or SeCys differed between tissue types. Selenocysteine was the predominant selenized amino acid in glandular tissues, such the liver and kidney. irrespective of treatment, although absolute values were markedly higher in HSY lambs. Conversely selenomethionine was the predominat selenized amino acid in cardiac and skeletal muscle (Longissimus Dorsi, and Psoas Major) tissues in HSY animals, although the same trend was not apparent for control lambs in which SeCys was the predominant selenized amino acid. It was concluded that there were increases in both whole blood and tissue total Se concentrations as a result of dietary supplementation with high dose of SY. Furthermore, distribution of total Se and Se species differed between both treatment designation and tissue type.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of in vitro experiments was carried out to examine the impact of enzyme application rate and incubation medium pH on the rate and extent of fermentation of alfalfa stems. In Experiment 1, a commercial enzyme product (Liquicell 2500, Specialty Enzyme and Biochemicals, Fresno, CA, USA) was added to alfalfa stems at six levels: 0, 0.51, 1.02, 2.55, 5.1, and 25.5 mu l/g (control and L1-L5, respectively) to forage DM in a completely randomized design, with a factorial arrangement of treatments. Rate and extent of fermentation and apparent organic matter degradation (OMD) were determined in vitro, using a gas production technique. Addition of enzyme linearly increased (P < 0.01) gas production for up to 12 h (68.9, 70.9, 67.6, 67.9, 71.9, and 74.9 ml/g OM for control, L1-L5, respectively) and OMD for up to 19 h incubation (0.425, 0.444, 0.433, 0.446, 0.443, and 0.451 for control, L1-L5, respectively), but no increases (P > 0.05) were detected thereafter. In Experiment 2, the effect of the same enzyme as used previously (added at 0.51 mu l/g forage DM, directly into the incubation medium), and buffer pH were examined using the ANKOM system, in a completely randomized design. Incubation medium pH was altered using 1 M citric acid, in order to obtain target initial pH values of 6.8 (control, no citric acid added), 6.2, 5.8, and 5.4. Actual initial pH values achieved were 6.72, 6.50, 6.20, and 5.72. Lowering the pH decreased (P < 0.01) dry matter disappearance (DMD) at 18 h incubation (0.339, 0.341, 0.314, and 0.291 for 6.72, 6.50, 6.20, and 5.72, respectively), whereas enzyme addition increased (P < 0.05) DMD at 24 h (0.363 versus 0.387 for control and enzyme-treated, respectively). Addition of enzyme increased (P < 0.05) neutral detergent fibre (NDF), acid detergent fibre (ADF), and hemicellulose (HC) degradation at pH 6.50 (0.077 versus 0.117; 0.020 versus 0.051; 0.217 versus 0.270 for control and enzyme-treated NDF, ADF and hemicellulose degradation, respectively) and 6.72 (0.091 versus 0.134; 0.041 versus 0.079; 0.205 versus 0.261 for control and enzyme-treated NDF, ADF and HC degradation, respectively). It is concluded that the positive effects of this enzyme product were independent of the pre-treatment period, but pH influenced the responses to enzyme supplementation. Under the conditions of this experiment, exogenous fibrolytic enzymes seemed to work better at close to neutrality ruminal pH conditions. (C) 2006 Elsevier B.V. All rights reserved.