915 resultados para REINFORCED RUBBER COMPOSITES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An infinite elastic solid containing a doubly periodic parallelogrammic array of cylindrical inclusions under longitudinal shear is studied. A rigorous and effective analytical method for exact solution is developed by using Eshelby's equivalent inclusion concept integrated with the new results from the doubly quasi-periodic Riemann boundary value problems. Numerical results show the dependence of the stress concentrations in such heterogeneous materials on the periodic microstructure parameters. The overall longitudinal shear modulus of composites with periodic distributed fibers is also studied. Several problems of practical importance, such as those of doubly periodic holes or rigid inclusions, singly periodic inclusions and single inclusion, are solved or resolved as special cases. The present method can provide benchmark results for other numerical and approximate methods. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation tests were carried out to investigate certain elastic properties of Al2O3/SiCp composites at microscopic scales (nm up to mu m) and under ultra-low loads from 3 mN to 250 mN, with special attention paid to effects caused by SiC particles and pores. The measured Young's modulus depends on the volume fraction of SiC particles and on the composite porosity and it can compare with that of alumina. The Young's modulus exhibits large scatters at small penetrations, but it tends to be constant with lesser dispersion as the indentation depth increases. Further analysis indicated that the scatter results from specific microstructural heterogeneities. The measured Young's moduli are in agreement with predictions, provided the actual role of the microstructure is taken into account. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we attempted to construct a constitutive model to deal with the phenomenon of cavitation and cavity growth in a rubber-like material subjected to an arbitrary tri-axial loading. To this end, we considered a spherical elementary representative volume in a general Rivlin's incompressible material containing a central spherical cavity. The kinematics proposed by [Hou, H.S., Abeyaratne, R., 1992. Cavitation in elastic and elastic-plastic solids. J. Mech. Phys. Solids 40, 571-722] was adopted in order to construct an approximate but optimal field. In order to establish a suitable constitutive law for this class of materials, we utilized the homogenisation technique that permits us to calculate the average strain energy density of the volume. The cavity growth was considered through a physically realistic failure criterion. Combination of the constitutive law and the failure criterion enables us to describe correctly the global behaviour and the damage evolution of the material under tri-axial loading. It was shown that the present models can efficiently reproduce different stress states, varying from uniaxial to tri-axial tensions, observed in experimentations. Comparison between predicted results and experimental data proves that the proposed model is accurate and physically reasonable. Another advantage is that the proposed model does not need special identification work, the initial Rivlin's law for the corresponding incompressible material is sufficient to form the new law for the compressible material resulted from cavitation procedure. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: