994 resultados para RAY PHOTOELECTRON SPECTROSCOPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effect of an Argon-based nonthermal plasma (NTP) surface treatment-operated chairside at atmospheric pressure conditions applied immediately prior to dental implant placement in a canine model. Surfaces investigated comprised: Calcium-Phosphate (CaP) and CaP + NTP (CaP-Plasma). Surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and chemistry by X-ray photoelectron spectroscopy (XPS). Six adult beagles dogs received 2 plateau-root form implants (n = 1 each surface) in each radii, providing implants that remained 1 and 3 weeks in vivo. Histometric parameters assessed were bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Statistical analysis was performed by Kruskall-Wallis (95% level of significance) and Dunn's post-hoc test. The XPS analysis showed peaks of Ca, C, O, and P for the CaP and CaP-Plasma surfaces. Both surfaces presented carbon primarily as hydro-carbon (CAC, CAH) with lower levels of oxidized carbon forms. The CaP surface presented atomic percent values of 38, 42, 11, and 7 for C, O, Ca, and P, respectively, and the CaPPlasma presented increases in O, Ca, and P atomic percent levels at 53, 12, and 13, respectively, in addition to a decrease in C content at 18 atomic percent. At 1 week no difference was found in histometric parameters between groups. At 3 weeks significantly higher BIC and BAFO were observed for CaPPlasma treated surfaces. Surface elemental chemistry was modified by the Ar-based NTP. Ar-based NTP improved bone formation around plateau-root form implants at 3 weeks compared with CaP treatment alone. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study investigated the effect of experimental photopolymerized coatings, containing zwitterionic or hydrophilic monomers, on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion. Methods: Acrylic specimens were prepared with rough and smooth surfaces and were either left untreated (control) or coated with one of the following experimental coatings: 2-hydroxyethyl methacrylate (HE); 3-hydroxypropyl methacrylate (HP); and 2-trimethylammonium ethyl methacrylate chloride (T); and sulfobetaine methacrylate (S). The concentrations of these constituent monomers were 25%, 30% or 35%. Half of the specimens in each group (control and experimentals) were coated with saliva and the other half remained uncoated. The surface free energy of all specimens was measured, regardless of the experimental condition. C. albicans adhesion was evaluated for all specimens, both saliva conditioned and unconditioned. The adhesion test was performed by incubating specimens in C. albicans suspensions (1 × 10 7 cell/mL) at 37 °C for 90 min. The number of adhered yeasts were evaluated by XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-5-[{phenylamino} carbonyl]-2H-tetrazolium-hydroxide) method. Results: For rough surfaces, coatings S (30 or 35%) and HP (30%) resulted in lower absorbance values compared to control. These coatings exhibited more hydrophilic surfaces than the control group. Roughness increased the adhesion only in the control group, and saliva did not influence the adhesion. The photoelectron spectroscopy analysis (XPS) confirmed the chemical changes of the experimental specimens, particularly for HP and S coatings. Conclusions: S and HP coatings reduced significantly the adhesion of C. albicans to the acrylic resin and could be considered as a potential preventive treatment for denture stomatitis. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma processing of carbon fibers (CFs) is aimed to provide better contact and adhesion between individual plies without decrease in the CF mechanical resistance. This paper deals with surface modification of CFs by an atmospheric pressure dielectric barrier discharge (DBD) for enhancing the adhesion between the CF and the polymeric matrix. The scanning electron microscopy of the treated samples revealed many small particles distributed over entire surface of the fiber. These particles are product of the fiber surface etching during the DBD treatment that removes the epoxy layer covering as-received samples. The alteration of the CF surface morphology was also confirmed by the Atomic force microscopy (AFM), which indicated that the CF roughness increased as a result of the plasma treatment. The analysis of the surface chemical composition provided by X-ray photoelectron spectroscopy showed that oxygen and nitrogen atoms are incorporated onto the surface. The polar oxygen groups formed on the surface lead to the increasing of the CF surface energy. The results of interlaminar shear strength test (short beam) of CFs/polypropylene composites demonstrated a greater shear resistance of the composites made with CFs treated by DBD than the one with untreated fibers. Both the increase in surface roughness and the surface oxidation contribute for the enhancement of CF adhesion properties. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes the efficiency of heterogeneous photocatalytic reactor for the inactivation of three air born bacteria, Escherichia coli, Bacillus subtilis and Staphylococcus aureus using metal modified TiO2 photocatalysts and blacklight irradiation. The catalysts were prepared by photodeposition of silver, palladium or iron on commercial TiO2, immobilized on glass plates. X-ray photoelectron spectroscopy analysis was applied to determine the atomic percentage and species of each metal on the TiO2 surface, showing that 85% of silver, 73% of palladium and 45% of iron were present in metallic form on TiO2 surface. The plates were positioned on the inner lateral walls of a chamber through which the contaminated air flow passed for disinfection. Irradiation of bare TiO 2 resulted in 50% inactivation of E. coli while 41% and 35% inactivation of B. subtilis and S. aureus were obtained, respectively. When metal modified TiO2 was applied, the inactivation of B. subtilis was improved to 91% using Pd-TiO2 while of S. aureus was improved to 94% with Fe-TiO2, showing in this case no significant difference when compared to Ag-TiO2 and Pd-TiO2. In contrast, inactivation of E. coli was not significantly increased when metal modified TiO2 was used, ranging from 47% to 57%. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface energy of the implant surface has an impact on osseointegration. In this study, 2 surfaces: nonwashed resorbable blasting media (NWRBM; control) and Ar-based nonthermal plasma 30 days (Plasma 30 days; experimental), were investigated with a focus on the surface energy. The surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and the chemistry by X-ray photoelectron spectroscopy (XPS). Five adult beagle dogs received 8 implants (n = 2 per surface, per tibia). After 2 weeks, the animals were euthanized, and half of the implants (n = 20) were removal torqued and the other half were histologically processed (n = 20). The bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were evaluated on the histologic sections. The XPS analysis showed peaks of C, Ca, O, and P for the control and experimental surfaces. While no significant difference was observed for BIC parameter (P > 0.75), a higher level for torque (P < 0.02) and BAFO parameter (P < 0.01) was observed for the experimental group. The surface elemental chemistry was modified by the plasma and lasted for 30 days after treatment resulting in improved biomechanical fixation and bone formation at 2 weeks compared to the control group. © 2013 Fernando P. S. Guastaldi et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the potential of plasma treatments to modify the surface chemistry and hydrophobicity of a denture base acrylic resin to reduce the Candida glabrata adhesion. Specimens (n=54) with smooth surfaces were made and divided into three groups (n=18): control - non-treated; experimental groups - submitted to plasma treatment (Ar/50W; AAt/130W). The effects of these treatments on chemical composition and surface topography of the acrylic resin were evaluated. Surface free energy measurements (SFE) were performed after the treatments and after 48h of immersion in water. For each group, half (n=9) of the specimens were preconditionated with saliva before the adhesion assay. The number of adhered C. glabrata was evaluated by cell counting after crystal violet staining. The Ar/50W and AAt/130W treatments altered the chemistry composition, hydrophobicity and topography of acrylic surface. The Ar/50W group showed significantly lower C. glabrata adherence than the control group, in the absence of saliva. After preconditioning with saliva, C. glabrata adherence in experimental and control groups did not differ significantly. There were significant changes in the SFE after immersion in water. The results demonstrated that Ar/50W treated surfaces have potential for reducing C. glabrata adhesion to denture base resins and deserve further investigation, especially to tailor the parameters to prolong the increased wettability. © 2012 Blackwell Verlag GmbH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siloxane-polymethyl methacrylate hybrid films containing functionalized multiwall carbon nanotubes (CNTs) were deposited by dip-coating on carbon steel substrates from a sol prepared by radical polymerization of methyl methacrylate and 3-methacryloxy propyl-trimethoxysilane, followed by hydrolytic co-polycondensation of tetraethoxysilane. The correlation between the structural properties and corrosion protection efficiency was studied as a function of the molar ratio of nanotubes carbon to silicon, varied in the range between 0.1% and 5%. 29Si nuclear magnetic resonance and thermogravimetric measurements have shown that hybrids containing carbon nanotubes have a similar degree of polycondensation and thermal stability as the undoped matrix and exhibit and excellent adhesion to the substrate. Microscopy and X-ray photoelectron spectroscopy results revealed a very good dispersion of carbon nanotubes in the hybrid matrix and the presence of carboxylic groups allowing covalent bonding with the end-siloxane nodes. Potentiodynamic polarization curves and electrochemical impedance spectroscopy results demonstrate that CNTs containing coatings maintain the excellent corrosion protection efficiency of the hybrids, showing even a superior performance in acidic solution. The nanocomposite structure acts as efficient corrosion barrier, increasing the total impedance by 4 orders of magnitude and reducing the current densities by more than 3 orders of magnitude, compared to the bare steel electrode. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we report the development of an efficient and rapid microwave assisted solvothermal (MAS) method to prepare wurtzite ZnS nanoparticles at 413 K using different precursors. The materials obtained were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (MET) ultraviolet-visible (UV-vis) and photoluminescence (PL) measurements. The structure, surface chemical composition and optical properties were investigated as a function of the precursor. In addition, effects as well as merits of microwave heating on the processing and characteristics of ZnS nanoparticles obtained are reported. The possible formation mechanism and optical properties of these nanoparticles were also reported. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the short- and long-range chemical environments of Cu dopant in TiO2 photocatalyst have been investigated. The Cu-doped and undoped TiO2 specimens were prepared by the sol-gel approach employing CuSO4·5H2O and Ti(O-iPr)4 precursors and subjecting the dried gels to thermal treatment at 400 and 500 C. The photocatalytic activity, investigated by methylene blue degradation under sunlight irradiation, showed a significantly higher efficiency of Cu-doped samples than that of pure TiO2. The X-ray diffraction results showed the presence of anatase phase for samples prepared at 400 and 500 C. No crystalline CuSO4 phase was detected below 500 C. It was also found that doping decreases the crystallite size in the (004) and (101) directions. Infrared spectroscopy results indicated that the chemical environment of sulfate changes as a function of thermal treatment, and UV-vis spectra showed that the band gap decreases with thermal treatment and Cu doping, showing the lowest value for the 400 C sample. X-ray absorption fine structure measurements and analysis refinements revealed that even after thermal treatment and photocatalytic assays, the Cu2+ local order is similar to that of CuSO4, containing, however, oxygen vacancies. X-ray photoelectron spectroscopy data, limited to the near surface region of the catalyst, evidenced, besides CuSO4, the presence of Cu1+ and CuO phases, indicating the active role of Cu in the TiO2 lattice. © 2013 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studied the degradation of dipyrone, via electrochemical processes and via electro-Fenton reaction using a 4% CeO2/C gas diffusion electrode (GDE) prepared via modified polymeric precursor method. This material was used to electrochemically generate H2O2 through oxygen reduction. The mean crystallite sizes estimated by the Scherrer equation for 4% CeO2/C were 4 nm for CeO2-x (0 4 4) and 5 nm for CeO2 (1 1 1) while using transmission electron microscopy (TEM) the mean nanoparticle size was 5.4 nm. X-ray photoelectron spectroscopy (XPS) measurements revealed nearly equal concentrations of Ce(III) and Ce(IV) species on carbon, which contained high oxygenated acid species like CO and OCO. Electrochemical degradation using Vulcan XC 72R carbon showed that the dipyrone was not removed during the two hour electrolysis in all applied potentials by electro-degradation. Besides, when the Fenton process was employed the degradation was much similar when using cerium catalysts but the mineralization reaches just to 50% at -1.1 V. However, using the CeO2/C GDE, in 20 min all of the dipyrone was degraded with 26% mineralization at -1.3 V and when the Fenton process was employed, all of the dipyrone was removed after 5 min with 57% mineralization at -1.1 V. Relative to Vulcan XC72R, ceria acts as an oxygen buffer leading to an increase in the local oxygen concentration, facilitating H2O2 formation and consequently improving the dipyrone degradation © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

a-C:H films were grown by plasma-enhanced chemical vapor deposition in atmospheres composed by 30 % of acetylene and 70 % of argon. Radiofrequency signal (RF) was supplied to the sample holder to generate the depositing plasmas. Deposition time and pressure were chosen 300 s and 9.5 Pa, respectively, while the excitation power changed from 5 to 125 W. The films were exposed to a post-deposition treatment during 300 s in RF-plasmas (13.56 MHz, 70 W) excited from 13.33 Pa of SF6. Raman and X-ray photoelectron spectroscopy were used to evaluate the microstructure and chemical composition of the films. The thickness was measured by perfilometry. Hardness and friction coefficient were determined from nanoindentation and risk tests, respectively. With increasing power, the film thickness reduced, but a further shrinkage occurred upon the fluorination process. After that, the molecular structure was observed to vary with deposition power. Fluorine was detected in all samples replacing H atoms. Consistently with the elevation in the proportion of C atoms with sp3 hybridization, hardness increased from 2 to 18 GPa. Friction coefficient also increased with power due to the generation of dangling bonds during the fluorination process. © 2012 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the chemical interaction between carbon nanotubes (MWCNT) functionalized with acyl chloride (SOCl2) and polymer chain tetrafuncional N,N,N′,N′-tetraglycidyl-4,4′- diaminodiphenylmethane (TGDDM) and hardener 4,4′diaminodiphenyl sulfone (DDS) has been monitored by Fourier transform infrared spectroscopy (FTIR) with a attenuated total reflectance (ATR) coupled. MWCNT were obtained from the pyrolysis of a mixture of camphor and ferrocene into a oven. The functionalization process was done by oxidative treatment in order to incorporate carboxylic group over the walls of MWCNT, before to be used SOCl2. The functionalized carbon nanotubes were evaluated by X-ray photoelectron spectroscopy (XPS), Raman and transmission electron microscopy (TEM). Nanostructured composites were processed by using epoxy resin with MWCNT in varying percentages. In this work it was observed that different percentages of functionalized nanotubes modify the interaction between the composite matrix and curing agent, where can be observed that in specimens with content less than 1 wt% MWCNT the chemical bond occurs preferentially from the opening of the SO double bond of the hardener and when is used MWCNT content higher than 1 wt% there is little chemical interaction with the SO bond of the hardener and most MWCNT binds to amine. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eumelanin pigments show hydration-dependent conductivity, broad-band UV-vis absorption, and chelation of metal ions. Solution-processing of synthetic eumelanins opens new possibilities for the characterization of eumelanin in thin film form and its integration into bioelectronic devices. We investigate the effect of different synthesis routes and processing solvents on the growth, the morphology, and the chemical composition of eumelanin thin films using atomic force microscopy and X-ray photoelectron spectroscopy. We further characterize the films by transient electrical current measurements obtained at 50% to 90% relative humidity, relevant for bioelectronic applications. We show that the use of dimethyl sulfoxide is preferable over ammonia solution as processing solvent, yielding homogeneous films with surface roughnesses below 0.5 nm and a chemical composition in agreement with the eumelanin molecular structure. These eumelanin films grow in a quasi layer-by-layer mode, each layer being composed of nanoaggregates, 1-2 nm high, 10-30 nm large. The transient electrical measurements using a planar two-electrode device suggest that there are two contributions to the current, electronic and ionic, the latter being increasingly dominant at higher hydration, and point to the importance of time-dependent electrical characterization of eumelanin films. This journal is © 2013 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the influence of the preparation method and the carbon support using a low contentof cerium oxide nanoparticles (CeO2/C 4%) on H2O2electrogeneration via the oxygen reduction reac-tion (ORR). For this purpose, the polymeric precursor (PPM) and sol-gel (SGM) methods with Vulcan XC72R (V) and Printex L6 (P) supports were employed. The materials were characterized by X-ray diffrac-tion (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TheXRD analysis identified two phases comprising CeO2and CeO 2-x. The smallest mean crystallite size wasexhibited for the 4% CeO2/C PPM P material, which was estimated using the Debye-Scherrer equation tobe 6 nm and 4 nm for the CeO2and the CeO 2-xphases, respectively, and was determined by TEM to be5.9 nm. XPS analysis was utilized to compare the oxygen content of the 4% CeO2/C PPM P to Printex L6.The electrochemical analysis was accomplished using a rotating ring-disk electrode. The results showedthat the 4% CeO2/C specimen, prepared by PPM and supported on Printex L6, was the best electrocatalystfor H2O2production in 1 mol L -1NaOH. This material showed the highest ring current, producing 88%H2O2and transferring 2.2 electrons per O 2molecule via the ORR at the lowest onset potential. Addition-ally, the ring-current of the 4% CeO2/C PPM P material was higher than that of Vulcan XC 72R and PrintexL6, the reference materials for H2O 2production, indicating the highest electrocatalytic activity for the 4%CeO2/C PPM P material. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative study using different mass proportions of WO3/C (1%, 5%, 10% and 15%) for H2O2 electrogeneration and subsequent phenol degradation was performed. To include the influence of the carbon substrate and the preparation methods, all synthesis parameters were evaluated. The WO3/C materials were prepared by a modified polymeric precursor method (PPM) and the sol-gel method (SGM) on Vulcan XC 72R and Printex L6 carbon supports, verifying the most efficient metal/carbon proportion. The materials were physically characterized by X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS) techniques. The XRD and the XPS techniques identified just one phase containing WO3 and elevated oxygen concentration on carbon with the presence of WO3. The oxygen reduction reaction (ORR), studied by the rotating ring-disk electrode technique, showed that WO3/C material with the lowest tungsten content (1% WO3/C), supported on Vulcan XC 72R and prepared by SGM, was the most promising electrocatalyst for H2O2 electrogeneration. This material was then analyzed using a gas diffusion electrode (GDE) and 585mgL-1 of H2O2 was produced in acid media. This GDE was employed as a working electrode in an electrochemical cell to promote phenol degradation by an advanced oxidative process. The most efficient method applied was the photo-electro-Fenton; this method allowed for 65% degradation and 11% mineralization of phenol during a 2-h period. Following 12h of exhaustive electrolysis using the photo-electro-Fenton method, the total degradation of phenol was observed after 4h and the mineralization of phenol approached 75% after 12h. © 2013 Elsevier B.V.