999 resultados para Quasars: absorption lines
Resumo:
A comprehensive experimental study was performed to identify and discriminate mechanisms contributing to passive intermodulation (PIM) in microstrip transmission lines. The effects of strip length and width, and substrate materials on PIM performance of printed lines were investigated in the GSM900, DCS1800 and UMTS frequency bands. The major features of the experiment design, sample preparation and test setup are discussed in detail. The measurement results have demonstrated that the PIM level cumulatively grows on the longer microstrip lines and decreases on wider strips and, thus, indicated that the distributed resistive nonlinearity of the printed traces represents the dominant mechanism of intermodulation generation in the printed lines on PTFE-based substrates. © 2009 The Institution of Engineering and Technology.
Resumo:
The phenomenological mechanisms of passive intermodulation (PIM) in printed lines have been explored by mapping intermodulation products generated by the two-tone traveling waves in microstrip lines. Near-field probing based upon a commercial PIM analyzer has been employed for identification of the PIM sources in printed lines. The results of extensive near-field probing provide the direct experimental evidences of cumulative growth of the intermodulation products in the matched uniform microstrip lines and reveal the fundamental role of the nonlinear scattering by the lumped nonlinear inclusions in the intermodulation production. The distributed nature of the PIM generation in microstrip lines has been conclusively demonstrated and comprehensively described in terms of the four-wave mixing process that proved to be fully consistent with the results of experimental observations of third-order PIM products on the matched and mismatched microstrip lines. © 2006 IEEE.
Resumo:
This paper addresses the theoretical aspects of passive intermodulation (PIM) generation in printed transmission lines. In order to elucidate the mechanisms of PIM generation, a new model of the transmission line length with distributed nonlinearity is proposed. The developed model has been validated by the near-field measurements of PIM product distributions along the microstrip lines. The contributions of nonlinear mixing, power dissipation, and load matching to PIM products have been analyzed in detail. The obtained results reveal the fundamental properties of PIM generation in finite lengths of printed lines with distributed non-linearity and identify possible means for PIM mitigation. It was shown for the first time that the reverse PIM products in a matched transmission line with distributed nonlinearity are generated due to nonlinear scattering. © 2008 IEEE.
Resumo:
We report observations of stable, localized, linelike structures in the spatially periodic pattern formed by nematic electroconvection, along which the phase of the pattern jumps by pi. With increasing electric voltage, these lines form a gridlike structure that goes over into a structure indistinguishable from the well-known grid pattern. We present theoretical arguments that suggest that the twisted cell geometry we are using is indirectly stabilizing the phase jump lines, and that the phase jump lines lattice is caused by an interaction of phase jump lines and a zig-zag instability of the surrounding pattern.
Resumo:
An experimental investigation of the effect of conductor-to-substrate interface on distributed passive intermodulation (PIM) generation in printed microstrip lines has been undertaken using the custom-designed microwave laminates with removed surface bonding layers and with the commercial adhesion promotion applied to the conductor underside. The study of long-term stability of PIM performance of the printed circuits is reported for the first time. The comprehensive measurement results, observations of the selfimprovement of the PIM performance and the effect of panel bending on PIM generation in printed boards with different finishing are presented. A consistent physical interpretation of the observed phenomena is proposed. The results of this study provide new important considerations for the design and characterisation of low-PIM printed circuits.
Tyrosine kinase and proteasome inhibition alter proteasome expression in BCR-ABL positive cell lines
Resumo:
Background. Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings. We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E-RoSH lines have similar gene expression profiles (r(2) = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9(hi), SSEA-1(-) while ESCs are CD9(lo), SSEA-1(+). Isolation of CD9(hi), SSEA-1(-) cells that constituted 1%-10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r(2) = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions. By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs.
Resumo:
As part of the European Supernova Collaboration, we obtained extensive photometry and spectroscopy of the Type Ia supernova (SN Ia) SN 2002dj covering epochs from 11 d before to nearly two years after maximum. Detailed optical and near-infrared observations show that this object belongs to the class of the high-velocity gradient events as indicated by Si, S and Ca lines. The light curve shape and velocity evolution of SN 2002dj appear to be nearly identical to SN 2002bo. The only significant difference is observed in the optical to near-infrared colours and a reduced spectral ernission beyond 6500 A. For high-velocity gradient SNe Ia, we tentatively identify a faster rise to maximum, a more pronounced inflection in the V and R light curves after maximum and a brighter, slower declining late-time B light curve as common photometric properties of this class of object. They also seem to be characterized by a different colour and colour evolution with respect to 'normal' SNe Ia. The usual light Curve shape parameters do not distinguish these events. Stronger, more blueshifted absorption features of intermediate-mass elements and lower temperatures are the most prominent spectroscopic features of SNe Ia displaying high-velocity gradients. It appears that these events burn more intermediate-mass elements in the outer layers. Possible connections to the metallicity of the progenitor star are explored.
Resumo:
Nanosecond time-resolved absorption (TA), resonance Raman (TR(3)), and infrared (TRIR) spectra are reported for several complexes [Ru(X)(R)(CO)(2)(alpha-diimine)] (X = Cl, Br, I; R = Me, Et; alpha-diimine = N,N'-diisopropyl-1,4-diaza-1,3-butadiene (iPr-DAB), pyridine-2-carbaldehyde-N-isopropylimine (iPr-PyCa), 2,2'-bipyridine (bpy)). This is the first instance in which the TA, TR(3), and TRIR techniques have been used to probe excited states in the same series of complexes. The TA spectra of the iodide complexes show a transient absorption between 550 and 700 nm, which does not depend on the solvent but shifts to lower energy in the order iPr-DAB > bpy > iPr-PyCa. This band is assigned to an intraligand transition. For the corresponding chloride and bromide complexes this band occurs at higher energy, most probably because of a change of character of the lowest excited state from XLCT to MLCT. The TRIR spectra show an increase in v(CO) (and k(CO)) on promotion to the excited state; however, the shifts Delta v(CO) show a decrease in the order Cl- > Br- > I-. The TR(3) spectra of the excited complexes [Ru(X)(R)(Co)(2)(iPr-DAB)] show v(s)(CN) of the iPr-DAB ligand 50-80 cm(-1) lower in frequency than for the complexes in their ground state. This frequency shift decreases in the order Cl- > Br- > I-, indicating a decrease of CT character of the lowest excited state in this order. However, going from X = Br to I, the effect on Delta v(CO) is much larger than the decrease of Delta v(s)(CN). This different effect on the CO- and CN-stretching frequencies is assigned to a gradual change in character of the lowest excited state from MLCT to XLCT when Cl- is replaced by Br- and I-. This result confirms a similar conclusion derived from previous resonance Raman and emission experiments on these complexes.