953 resultados para Quality Regulation by Consumer Self—help
Resumo:
The effects of the addition to sausage mix of tocopherols (200 mg/kg), a conventional starter culture with or without Staphylococcus carnosus, celery concentrate (CP) (0.23% and 0.46%), and two doses of nitrate (70 and 140 mg/kg expressed as NaNO(3)) on residual nitrate and nitrite amounts, instrumental CIE Lab color, tocol content, oxidative stability, and overall acceptability were studied in fermented dry-cured sausages after ripening and after storage. Nitrate doses were provided by nitrate-rich CP or a chemical grade source. The lower dose complies with the EU requirements governing the maximum for ingoing amounts in organic meat products. Tocopherol addition protected against oxidation, whereas the nitrate dose, nitrate source, or starter culture had little influence on secondary oxidation values. The residual nitrate and nitrite amounts found in the sausages with the lower nitrate dose were within EU-permitted limits for organic meat products and residual nitrate can be further reduced by the presence of the S. carnosus culture. Color measurements were not affected by the CP dose. Product consumer acceptability was not affected negatively by any of the factors studied. As the two nitrate sources behaved similarly for the parameters studied, CP is a useful alternative to chemical ingredients for organic dry-cured sausage production.
Resumo:
RATIONALE:We investigated the impact of canakinumab, a fully human anti-interleukin-1b monoclonal antibody on inflammation and HRQoL in gouty arthritis patients.METHODS: In this 8-week, single-blind, dose-ranging study, patients with acute gouty arthritis flares, unresponsive/intolerant or contraindicated to NSAIDs and/or colchicine were randomized to single subcutaneous canakinumab (10, 25, 50, 90, or 150mg, N5143) or single intramuscular triamcinolone acetonide (TA, 40mg, N557). Patients assessed pain (Likert scale), physicians assessed clinical signs of joint inflammation, and HRQoL was recorded using SF-36.RESULTS: At baseline, 98% patients had moderate-to-extreme pain, 85% had moderate/severe joint swelling, 64-79% had elevated inflammatory markers and HRQoL scores indicated impaired physical function. Percentage of patients with no/mild pain was numerically greater in most canakinumab groups vs. TA, 24-72h post-dose; difference significant for 150mg group at these time-points (P<0.05). Canakinumab 150mg was associated with significantly lower Likert scores for tenderness [OR, 3.2; 95% CI, 1.27-7.89; P50.014] and swelling (OR, 2.7; 95% CI, 1.09-6.50, P50.032) at 72h vs. TA; erythema was not different. Median CRP and SAA levels normalized by 7 days post-dose in most canakinumab groups, but remained elevated in TA. Physical function improved at 7 days postdose in all groups, highest improvement for canakinumab 150mg. SF-36 scores for physical functioning and bodily pain with canakinumab 150mg approached US general population scores by 7 days post-dose and exceeded normal values by 8 weeks post-dose.CONCLUSION: Canakinumab 150mg produced significantly greater and rapid pain-relief and improvements in HRQoL vs. TAin acute gouty arthritis patients.
Resumo:
Acquisition of a mature dendritic morphology is critical for neural information processing. In particular, hepatocyte growth factor (HGF) controls dendritic arborization during brain development. However, the cellular mechanisms underlying the effects of HGF on dendritic growth remain elusive. Here, we show that HGF increases dendritic length and branching of rat cortical neurons through activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Activation of MAPK by HGF leads to the rapid and transient phosphorylation of cAMP response element-binding protein (CREB), a key step necessary for the control of dendritic development by HGF. In addition to CREB phosphorylation, regulation of dendritic growth by HGF requires the interaction between CREB and CREB-regulated transcription coactivator 1 (CRTC1), as expression of a mutated form of CREB unable to bind CRTC1 completely abolished the effects of HGF on dendritic morphology. Treatment of cortical neurons with HGF in combination with brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family that regulates dendritic development via similar mechanisms, showed additive effects on MAPK activation, CREB phosphorylation and dendritic growth. Collectively, these results support the conclusion that regulation of cortical dendritic morphology by HGF is mediated by activation of the MAPK pathway, phosphorylation of CREB and interaction of CREB with CRTC1.
Resumo:
BACKGROUND: The central function of dendritic cells (DC) in inducing and preventing immune responses makes them ideal therapeutic targets for the induction of immunologic tolerance. In a rat in vivo model, we showed that dexamethasone-treated DC (Dex-DC) induced indirect pathway-mediated regulation and that CD4+CD25+ T cells were involved in the observed effects. The aim of the present study was to investigate the mechanisms underlying the acquired immunoregulatory properties of Dex-DC in the rat and human experimental systems. METHODS: After treatment with dexamethasone (Dex), the immunogenicity of Dex-DC was analyzed in T-cell proliferation and two-step hyporesponsiveness induction assays. After carboxyfluorescein diacetate succinimidyl ester labeling, CD4+CD25+ regulatory T-cell expansion was analyzed by flow cytometry, and cytokine secretion was measured by ELISA. RESULTS: In this study, we demonstrate in vitro that rat Dex-DC induced selective expansion of CD4+CD25+ regulatory T cells, which were responsible for alloantigen-specific hyporesponsiveness. The induction of regulatory T-cell division by rat Dex-DC was due to secretion of interleukin (IL)-2 by DC. Similarly, in human studies, monocyte-derived Dex-DC were also poorly immunogenic, were able to induce T-cell anergy in vitro, and expand a population of T cells with regulatory functions. This was accompanied by a change in the cytokine profile in DC and T cells in favor of IL-10. CONCLUSION: These data suggest that Dex-DC induced tolerance by different mechanisms in the two systems studied. Both rat and human Dex-DC were able to induce and expand regulatory T cells, which occurred in an IL-2 dependent manner in the rat system.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
The innate immune system has evolved the capacity to detect specific pathogens and to interrogate cell and tissue integrity in order to mount an appropriate immune response. Loss of homeostasis in the endoplasmic reticulum (ER) triggers the ER-stress response, a hallmark of many inflammatory and infectious diseases. The IRE1/XBP1 branch of the ER-stress signaling pathway has been recently shown to regulate and be regulated by innate immune signaling pathways in both the presence and absence of ER-stress. By contrast, innate immune pathways negatively affect the activation of two other branches of the ER-stress response as evidenced by reduced expression of the pro-apoptotic transcription factor CHOP. Here we will discuss how innate immune pathways and ER-signaling intersect to regulate the intensity and duration of innate immune responses.
Resumo:
INTRODUCTION: Self-report of diabetes care has moderate validity and is prone to under- and over-reporting. We assessed reproducibility of a range of processes and outcomes of diabetes care as reported by patients and physicians. METHODS: In a Swiss community-based survey, patients with diabetes and physicians independently reported past 12 months processes of care (HbA1c, lipids, microalbuminuria, blood pressure, weight, foot and eye examinations) and last measured values of HbA1c, height, weight and blood pressure. For dichotomous variables, we assessed reliability by Cohen's kappa and agreement by uniform kappa. For continuous measures, we used Lin's concordance correlation coefficient and limits of agreement, respectively. RESULTS: Mean age of the 210 patients was 65 years; 40% were women, and 51% had diabetes for >10 years. Agreement was good for recommended processes of care such as blood pressure (uniform kappa = 0.94), HbA1c (0.93), weight (0.88) and lipid (0.78), but lower for microalbuminuria, foot and eye examinations (all <0.50). Cohen's kappa values were all low (<0.25). Comparisons of reported continuous variables showed large limits of agreement for height (±6 cm) and weight (8-10 kg) despite high concordance correlation coefficients (0.93 and 0.97). Concordance correlation coefficients were smaller for HbA1c (0.72) and blood pressure (0.5-0.6), with large limits of agreement (±2% and ±25 mmHg). CONCLUSION: While agreement of routine processes of care was good, agreement was less satisfactory for microalbuminuria, foot and eye examinations. Reports of continuous outcomes yielded good reliability but too wide limits of agreement. Quality of care evaluation relying on self-report only should be made cautiously.
Resumo:
Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.
Resumo:
Diplomityössä tutkittiin kuuman pyrolyysihöyryn puhdistamista haisevista ja kevyistä haihtuvista yhdisteistä. Työn kirjallisuusosassa selvitettiin pyrolyysiöljyn kannattavuutta uusiutuvana energialähteenä. Lisäksi eri pesurityyppejä tarkasteltiin ja ja vertailtiin. Työn kokeellisessa osassa käytettiin kahta erilaista koelaitteistoa. Tuotteen talteenotossa vertailtiin reaktorilämpötilan ja raaka-aineen kosteuden vaikutusta pyrolyysisaantoihin. Komponenttien talteenotossa tutkittiin epästabiilien ja pistävän hajuisten yhdisteiden poistamista kuumasta pyrolyysihöyrystä. Raaka-aineena käytettiin kuusen metsätäh-dehaketta, joka sisältää runsaasti neulasia ja kaarnaa. Kokeet toteutettiin lämpötila-alueella 460 - 520 °C. Koelaitteistot koostuivat kaasun (N2) syöttöjärjestelmään kytketystä kuumasta ja kyl-mästä puolesta. Tuotteen talteenotossa kuuma pyrolyysihöyry jäähdytettiin ja otettiin talteen. Komponenttien talteenotossa tuote kerättiin suodattimelle ja metyleeniklo-ridiloukkuun. Tuotteiden koostumukset analysoitiin kaasukromatokrafilla. Korkeimmat orgaaniset saannot saatiin 480 °C reaktorilämpötilalla ja 8-9 p-% raaka-ainekosteudella. Pyrolyysiveden määrä putosi raaka-aineen kosteutta nostettaessa. Eri reaktorilämpötiloilla ja raaka-ainekosteuksilla ei ollut vaikutusta hiiltosaantoihin. Kaasusaannot (pääosin CO2, CO ja hiilivedyt) olivat noin 10 p-%. Komponenttien talteenotossa suodatin tukkeutui matalissa (< 250 °C) lämpötiloissa. Suodattimelle jäänyt materiaali oli pääosin neulasista ja kaarnasta peräisin olevia uuteaineita (pääosin hartsi- rasvahappoja) ja sokereita. Korkeimmissa lämpötiloissa (> 250 °C) uuteaineet läpäisivät suodattimen paremmin. 250 ja 300 °C:n lämpötiloissa suuri määrä lyhytketjuisia helposti haihtuvia epästabiileja ja haisevia yhdisteitä (ketoneja, furaani- ja furfuraalijohdannaisia jne.) jäi metyleenikloridi- ja metanoliloukkuihin.
Resumo:
The aim of this work is to optimize and validate methods for the multiresidue determination of series of families of antibiotics as quinolones, penicillins and cephalosporins included in European regulation in food samples using LC-MS/MS. Different extraction techniques and clean-up applied to antibiotics in meat were compared. The quality parameters were established according with EU guideline. The developed method was applied to 49 positive raw milk samples from animal medicated with different antibiotics; the 63% of the analyzed samples were found to be compliant. ___________________________________________________________________________________________
Resumo:
Results of this study represent the first report of the effect of Naphthalene Acetic Acid (NAA) on the pre and post harvest quality of wax apple fruit. The wax apple trees were spray treated with 0, 5, 10 and 20 mg L-1 NAA under field conditions during 2008 to 2011. The experiments were carried out in Completely Randomized Design (CRD) with six replications. Leaf chlorophyll content, chlorophyll fluorescence, photosynthetic yield, net photosynthetic rate, drymatter content of leaves and total soluble solids and K+content of wax apple fruits were significantly increased after treatments with 10 mg L-1. Polygalacturonase activity significantly decreased with NAA treatments. The application of 5 mg L-1 NAA increased 27% more bud and reduced 42% less fruit drop compared to the control. In addition, higher protein and phosphate synthase activity of leaves, fruit set, fruit growth, larger fruit size and yield were recorded in NAA treated plants. In storage, treated fruits exhibited higher TSS and firmness and less weight loss, browning, titratable acidity, respiration and ethylene production than the control. It is concluded that spraying with 5 and 10 mg L-1 NAA once a week under field conditions produced better fruit growth and yield of the wax apple and maintained better fruit quality in postharvest storage.
Resumo:
CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis.
Resumo:
ABSTRACT Fertilization of temperate fruit trees, such as grapevine ( Vitis spp.), apple ( Malus domestica), and pear ( Pyrus communis) is an important tool to achive maximum yield and fruit quality. Fertilizers are provided when soil fertility does not allow trees to express their genetic potential, and time and rate of application should be scheduled to promote fruit quality. Grapevine berries, must and wine quality are affected principally by N, that regulate the synthesis of some important compounds, such as anthocyanins, which are responsible for coloring of the must and the wine. Fermenation of the must may stop in grapes with low concentration of N because N is requested in high amount by yeasts. An N excess may increase the pulp to peel ratio, diluting the concentration of anthocyanins and promoting the migration of anthocyanins from berries to the growing plant organs; a decrease of grape juice soluble solid concentration is also expected because of an increase in vegetative growth. Potassium is also important for wine quality contributing to adequate berry maturation, concentration of sugars, synthesis of phenols and the regulation of pH and acidity. In apple and pear, Ca and K are important for fruit quality and storage. Potassium is the most important component of fruit, however, any excess should be avoided and an adequate K:Ca balance should be achieved. Adequate concentration of Ca in the fruit prevents pre- and post-harvest fruit disorders and, at the same time, increases tolerance to pathogens. Although N promotes adequate growth soil N availability should be monitored to avoid excessive N uptake that may decrease fruit skin color and storability.