979 resultados para Psychophysics continuum
Resumo:
The experience of pain occurs when the level of a stimulus is sufficient to elicit a marked affective response, putatively to warn the organism of potential danger and motivate appropriate behavioral responses. Understanding the biological mechanisms of the transition from innocuous to painful levels of sensation is essential to understanding pain perception as well as clinical conditions characterized by abnormal relationships between stimulation and pain response. Thus, the primary objective of this study was to characterize the neural response associated with this transition and the correspondence between that response and subjective reports of pain. Towards this goal, this study examined BOLD response profiles across a range of temperatures spanning the pain threshold. 14 healthy adults underwent functional magnetic resonance imaging (fMRI) while a range of thermal stimuli (44-49oC) were applied. BOLD responses showed a sigmoidal profile along the range of temperatures in a network of brain regions including insula and mid- cingulate, as well as a number of regions associated with motor responses including ventral lateral nuclei of the thalamus, globus pallidus and premotor cortex. A sigmoid function fit to the BOLD responses in these regions explained up to 85% of the variance in individual pain ratings, and yielded an estimate of the temperature of steepest transition from non-painful to painful heat that was nearly identical to that generated by subjective ratings. These results demonstrate a precise characterization of the relationship between objective levels of stimulation, resulting neural activation, and subjective experience of pain and provide direct evidence for a neural mechanism supporting the nonlinear transition from innocuous to painful levels along the sensory continuum.
Resumo:
Readers need to easily discriminate between different letters, so typefaces are designed to make these differences distinctive. But there is also a uniformity of style within a typeface. These styles are recognised by typographic designers and may be categorised to enable more efficient discrimination among typefaces. The manner in which designers perceive typefaces is explored using the paradigm of Categorical Perception (CP). A continuum of fonts is created by interpolating between two typefaces and two tasks (identification and discrimination) are used to test for CP. As the application of CP to typefaces is a new approach, various methodological issues are pursued. The experiments reveal that the conditions required to demonstrate CP are quite specific and CP was only evident in Times and Helvetica and not Garamond and Bodoni. Possible reasons for this difference are the characteristics of the two typefaces and their context of use. Speculation as to the purpose of CP in non-designers raises the under-researched question of how we identify letters in different typefaces when reading.
Resumo:
Letter identification is a critical front end of the reading process. In general, conceptualizations of the identification process have emphasized arbitrary sets of distinctive features. However, a richer view of letter processing incorporates principles from the field of type design, including an emphasis on uniformities across letters within a font. The importance of uniformities is supported by a small body of research indicating that consistency of font increases letter identification efficiency. We review design concepts and the relevant literature, with the goal of stimulating further thinking about letter processing during reading.