905 resultados para Protein-kinase Activation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many macrophage functions are modulated by fatty acids (FAs), including cytokine release, such as tumor necrosis factor-alpha (TNF-alpha). TNF-alpha is of great interest due to its role in the inflammation process observed in several diseases such as rheumatoid arthritis, atherosclerosis, and obesity. However, the mechanisms by which FA effects occur have not been completely elucidated yet. In this study, we used a mouse monocyte lineage (J774 cells) to evaluate the effect of 50 and 100 mu M of saturated (palmitic and stearic acids), monounsaturated (oleic acid) and polyunsaturated (linoleic acid) FAs on TNF-alpha production. Alterations in gene expression, poly(A) tail length and activation of transcription factors were evaluated. Oleic and linoleic acids, usually known as neutral or pro-inflammatory FA, inhibited LPS-induced TNF-alpha secretion by the cells. Saturated FAs were potent inducers of TNF-alpha expression and secretion under basal and inflammatory conditions (in the presence of LPS). Although the effect of the saturated FA was similar, the mechanism involved in each case seem to be distinct, as palmitic acid increased EGR-1 and CREB binding activity and stearic acid increased mRNA poly(A) tail. These results may contribute to the understanding of the molecular mechanisms by which saturated FAs modulate the inflammatory response and may lead to design of associations of dietary and pharmacological strategies to counteract the pathological effects of TNF-alpha.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unfolded protein response (UPR)-mediated pancreatic beta-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against beta-cell death induced by proinflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) andC/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2 alpha kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic beta-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT. Journal of Endocrinology (2010) 206, 183-193

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 mu M) concentrations of forskolin, respectively. The expression of GLP-1 receptors in a cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on a cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates a cell electrical activity, increases [Ca(2+)] enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP]). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP],.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as obesity and type 2 diabetes mellitus. These high levels of plasma FFA are proposed to play an important role for the development of insulin resistance but the mechanisms involved are still unclear. This study investigated the effects of saturated and unsaturated FFA on insulin sensitivity in parallel with mitochondrial function. C2C12 myotubes were treated for 24 h with 0.1 mM of saturated (palmitic and stearic) and unsaturated (oleic, linoleic, eicosapentaenoic, and docosahexaenoic) FFA. After this period, basal and insulin-stimulated glucose metabolism and mitochondrial function were evaluated. Saturated palmitic and stearic acids decreased insulin-induced glycogen synthesis, glucose oxidation, and lactate production. Basal glucose oxidation was also reduced. Palmitic and stearic acids impaired mitochondrial function as demonstrated by decrease of both mitochondrial hyperpolarization and ATP generation. These FFA also decreased Akt activation by insulin. As opposed to saturated FFA, unsaturated FFA did not impair glucose metabolism and mitochondrial function. Primary cultures of rat skeletal muscle cells exhibited similar responses to saturated FFA as compared to C2C12 cells. These results show that in muscle cells saturated FFA-induced mitochondrial dysfunction associated with impaired insulin-induced glucose metabolism. J. Cell. Physiol. 222: 187-194, 2010. (C) 2009 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy and RET/PTC rearrangements represent key genetic events frequently associated to this cancer, enhancing proliferation and dedifferentiation by activation of the RET/PTC-RAS-BRAF-mitogen-activated protein kinase (MAPK) pathway. Recently, let-7 microRNA was found to reduce RAS levels in lung cancer, acting as a tumor suppressor gene. Here, we report that RET/PTC3 oncogenic activation in PCCL3 rat thyroid cells markedly reduces let-7f expression. Moreover, stable transfection of let-7 microRNA in TPC-1 cells, which harbor RET/PTC1 rearrangement, inhibits MAPK activation. As a result, let-7f was capable of reducing TPC-1 cell growth, and this might be explained, at least in part, by decreased messenger RNA (mRNA) expression of cell cycle stimulators such as MYC and CCND1 (cyclin D1) and increased P21 cell cycle inhibitor mRNA. In addition, let-7 enhanced transcriptional expression of molecular markers of thyroid differentiation such as TITF1 and TG. Thus, reduced expression of let-7f might be an essential molecular event in RET/PTC malignant transformation. Moreover, let-7f effects on thyroid growth and differentiation might attenuate neoplastic process of RET/PTC papillary thyroid oncogenesis through impairment of MAPK signaling pathway activation. This is the first functional demonstration of an association of let-7 with thyroid cancer cell growth and differentiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-kappa B (nuclear factor kappa B), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/ SAPK (c-Jun N-terminal protein kinase/ stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-kappa B, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/ 2, p38, SAPK/ JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The uptake of oxLDL by CD36 is not regulated by intracellular levels of cholesterol, leading to macrophage differentiation into foam cells which play a major role in atherosclerosis. Furthermore, oxLDL competes with PAF in macrophages for binding to PAF receptors (PAFR). Here we investigated the involvement of PAFR in CD36 expression and uptake of oxLDL by human monocytes/macrophages. Adherent peripheral blood mononuclear cells were treated with PAFR-antagonists (WEB2170, CV3988); inhibitors of ERK1/2 (PD98059), p38 (SB203580), JNK (SP600125) or diluents, before stimulation with oxLDL or PAF. After 24 h, uptake of FITC oxLDL and expression of CD36 was determined by flow cytometry and phosphorylation of MAP-kinases by Western blot. It was shown that the uptake of oxLDL was reduced by PAFR antagonists. CD36 expression was up-regulated by oxLDL, an effect reversed by PAFR antagonists. The up-regulation of CD36 and oxLDL uptake both required MAP-kinases activation. The oxLDL induced ERK1/2 and JNK but not p38 phosphorylation was reversed by PAFR-antagonists suggesting that oxLDL signalling involves PAFR dependent and independent pathways. In macrophages from PAFR(-/-) mice, oxLDL was unable to up-regulate CD36 expression and the oxLDL uptake was reduced compared to wild type. These results suggest that oxLDL interacts with PAFR in macrophages to increase CD36 expression and oxLDL uptake. Whereas pharmacological intervention at the level of PAFR would be beneficial in atherosclerosis remains to be determined. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-delta (PKC delta) and PI3K but not PKC alpha and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE. Interleukin (IL)-17, which is responsible for the initial influx of leukocytes into the target tissue, was recently described as the main cytokine involved in autoimmune diseases. Vogt-Koyanagi-Harada (VKH) syndrome is a significant cause of noninfectious blindness in the world. Herein the authors aimed at unraveling the involvement of IL-17 in VKH and in experimental autoimmune uveitis, focusing on the signaling pathways involved in IL-17 synthesis. METHODS. Mice were immunized with 161-180 peptide and pertussis toxin. Draining lymph node cells, harvested 21 days after immunization, were cultured in the presence or absence of p38 alpha mitogen-activated protein kinase (MAPK) inhibitor (SB203580) and assayed for cytokine production and quantification of CD4(+)IL-17(+) cells. Mice received intraocular injections of SB203580, and disease severity was evaluated by histologic examination of the enucleated eyes at day 21. CD4(+) lymphocytes from MSK-1/2-deficient mice, human CD4(+) cells silenced with MSK1 siRNA, or peripheral blood mononuclear cells (PBMCs) from VKH patients were cultured in the presence or absence of p38 alpha MAPK inhibitor and then assayed for IL-17, IFN-gamma, and IL-4 production. RESULTS. The inhibition of p38 alpha MAPK fully blocked the synthesis of IL-17 by PBMCs from VKH patients and lymphocytes from EAU mice. The absence of the msk1/2 gene resulted in failure to produce IL-17 by murine and human lymphocytes. Interestingly, intraocular injections of SB203580 in EAU mice did not suppress development of the disease. CONCLUSIONS. These data show that p38 alpha MAPK-MSK1/2 is involved in the control of IL-17 synthesis by CD4(+) T cells and that inhibition of p38 alpha MAPK in vitro suppresses IL-17 synthesis but that inhibition of this kinase in vivo did not protect from EAU. (Invest Ophthalmol Vis Sci. 2010;51:3567-3574) DOI: 10.1167/iovs.09-4393

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent evidence suggests that angiotensin II (Ang II) upregulates phosphodiesterase (PDE) 1A expression. We hypothesized that Ang II augmented PDE1 activation, decreasing the bioavailability of cyclic guanosine 3` 5`-monophosphate (cGMP), and contributing to increased vascular contractility. Male Sprague-Dawley rats received mini-osmotic pumps with Ang II (60 ng.min(-1)) or saline for 14 days. Phenylephrine (PE)-induced contractions were increased in aorta (E(max)168%+/- 8% vs 136%+/- 4%) and small mesenteric arteries (SMA; E(max)170%+/- 6% vs 143%+/- 3%) from Ang II-infused rats compared to control. PDE1 inhibition with vinpocetine (10 mu mol/L) reduced PE-induced contraction in aortas from Ang II rats (E(max)94%+/- 12%) but not in controls (154%+/- 7%). Vinpocetine decreased the sensitivity to PE in SMA from Ang II rats compared to vehicle (-log of half maximal effective concentration 5.1 +/- 0.1 vs 5.9 +/- 0.06), but not in controls (6.0 +/- 0.03 vs 6.1 +/- 0.04). Sildenafil (10 mu mol/L), a PDE5 inhibitor, reduced PE-induced maximal contraction similarly in Ang II and control rats. Arteries were contracted with PE (1 mu mol/L), and concentration-dependent relaxation to vinpocetine and sildenafil was evaluated. Aortas from Ang II rats displayed increased relaxation to vinpocetine compared to control (E(max)82%+/- 12% vs 445 +/- 5%). SMA from Ang II rats showed greater sensitivity during vinpocetine-induced relaxation compared to control (-log of half maximal effective concentration 6.1 +/- 0.3 vs 5.3 +/- 0.1). No differences in sildenafil-induced relaxation were observed. PDE1A and PDE1C expressions in aorta and PDE1A expression in SMA were increased in Ang II rats. cGMP production, which is decreased in arteries from Ang II rats, was restored after PDE1 blockade. We conclude that PDE1 activation reduces cGMP bioavailability in arteries from Ang II, contributing to increased contractile responsiveness. (Hypertension. 2011;57[part 2]:655-663.)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/ mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation. J. Cell. Physiol. 226: 666-674, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diabetic patients are more susceptible to infections, and their inflammatory response is impaired. This is restored by insulin treatment. In the present study, we investigated the effect of insulin on LPS-induced signaling pathways and mediators in the lung of diabetic rats. Diabetic male Wistar rats (alloxan, 42 mg/kg i.v., 10 days) and control rats received intratracheal instillation of LPS (750 mu g/0.4 mL) or saline. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU s.c.) 2 h before LPS. After 6 h, bronchoalveolar lavage was performed for the release of mediators, and lung tissue was homogenized for analysis of LPS-induced signaling pathways. Relative to control rats, diabetic rats exhibited a significant reduction in the LPS-induced phosphorylation of extracellular signal-regulated kinase (64%), p38 (70%), protein kinase B (67%), and protein kinase C alpha (57%) and delta (65%) and in the expression of iNOS (32%) and cyclooxygenase 2 (67%) in the lung homogenates. The bronchoalveolar lavage fluid concentrations of NO (47%) and IL-6 (49%) were also reduced in diabetic rats, whereas the cytokine-induced neutrophil chemoattractant 2 (CINC-2) levels were increased 23%, and CINC-1 was not different from control animals. Treatment of diabetic rats with insulin completely or partially restored all these parameters. In conclusion, data presented show that insulin regulates mitogen-activated protein kinase, phosphatidylinositol 3`-kinase, protein kinase C pathways, expression of the inducible enzymes, cyclooxygenase 2 and iNOS, and levels of IL-6 and CINC-2 in LPS-induced lung inflammation in diabetic rats. These results suggest that the protective effect of insulin in sepsis could be due to modulation of cellular signal transduction factors.