913 resultados para Project analysis
Resumo:
Manganese nodules research has focused on the area between the Clarion Fracture Zone to the North and the Clipperton Fracture Zone to the South where significant concentrations were found ni Ni-Cu. During the CCOP/SOPAC-IOC/IDOE International workshop on the "Geology Mineral Resources and Geophysics of the South Pacific" held in Fiji in September 1975, a working group on manganese nodules was formed by scientists from: CNEXO, Brest, the Institute of Oceanography, New Zealand, Imperial College, London and the Technical University of Aachen. A draft project was presented in July 1976 by J. Andrews, University of Hawaii and G. Pautot, Cnexo on a joint survey under the name of: "Hawaii-Tahiti Transect program". Further details were worked on in September 1976 during the International Geological Congress in Sydney with the participation of D. Cronan, Imperial College, Glasby, New Zealand Geological Survey and G. Friedrich, Aachen TU. The scientific final program was established in July 1977, planning on the participation of three research vessels: the Suroit (CNEXO), the Kana Keoki (U. of Hawaii) and the Sonne (Aachen TU). Several survey areas were selected across the Pacific Ocean (Areas A, B, C, D, E, F, G and H) with about the same crustal age (about 40 million years) and a similar water depths. Being near large fault zones, the ares would be adequate to study the influences of biological productivity, sedimentation rate and possibly volcanic activity on the formation and growth of manganese nodules. The influnece of volcanic activity study would particularly apply to area G being situated near the Marquesas Fracture Zone. The cruise from R/V Sonne started in August 1978 over areas C, D, F, G K. The R/V suroit conducted a similar expedition in 1979 over areas A, B, C, D, E, H and I. Others cruises were planned during the 1979-1980 for the R/V Kana Keoki. The present text relates the R/V Sonne Cruises SO-06/1 and SO-06/2 held within the frame work of this international cooperative project.
Resumo:
Sediments in the area of the Galapagos hydrothermal mounds are divided into two major categories. The first group, pelagic sediments, are nannofossil oozes with varying amounts of siliceous microfossils. The second group are hydrothermal sediments consisting of manganese-oxide crust fragments and green nontronitic clay granules. Hydrothermal sediments occur only in the upper half to two-thirds of the cores and are interbedded and mixed with pelagic sediments. Petrologic evidence indicates that hydrothermal nontronite forms as both a primary precipitate and as a replacement mineral of pre-existing pelagic sediment and hydrothermal manganese-oxide crust fragments. In addition, physical evidence supports chemical equations indicating that the pelagic sediments are being dissolved by hydrothermal solutions. The formation of hydrothermal nontronite is not merely confined to the surface of mounds, but also occurs at depth within their immediate area; hydrothermal nontronite is very likely forming today. Geologically speaking, the mounds and their hydrothermal sediments form almost instantaneously. The Galapagos mounds area is a unique one in the ocean basins, where pelagic sediments can be diagenetically transformed, dissolved, and replaced, possibly within a matter of years.
Resumo:
The quantity, type, and maturity of the organic matter in Recent through Upper Jurassic sediments from the Falkland Plateau, DSDP Site 511, have been determined. Sediments were investigated for their hydrocarbon potential by organic carbon and Rock-Eval pyrolysis. Kerogen concentrates were prepared and analyzed in reflected and transmitted light to determine vitrinite reflectance and maceral content. Total extractable organic compounds were analyzed for their elemental composition, and the fraction of the nonaromatic hydrocarbons was determined by capillary column gas chromatography and combined gas chromatography/mass spectrometry. Three main classes of organic matter can be determined at DSDP Site 511 by a qualitative and quantitative evaluation of microscopic and geochemical results. The Upper Jurassic to lower Albian black shales contain high amounts of organic matter of dominantly marine origin. The content of terrigenous organic matter increases at the base of the black shales, whereas the shallowest black shales near the Aptian/Albian boundary are transitional in composition, with increasing amounts of inert, partly oxidized organic matter which is the dominant component in all Albian through Tertiary sediments investigated. The organic matter in the black shales has a low level of maturity and has not yet reached the onset of thermal hydrocarbon generation. This is demonstrated by the low amounts of total extractable organic compounds, low percentages of hydrocarbons, and the pattern and composition of nonaromatic hydrocarbons. The observed reflectance of huminite and vitrinite particles (between 0.4% and 0.5% Ro at bottom-hole depth of 632 m) is consistent with this interpretation. Several geochemical parameters indicate, however, a rapid increase in the maturation of organic matter with depth of burial. This appears to result from the relatively high heat flow observed at Site 511. If we relate the level of maturation of the black shales at the bottom of Hole 511 to their present shallow depth of burial, they appear rather mature. On the basis of comparisons with other sedimentary basins of a known geothermal history, a somewhat higher paleotemperature gradient and/or additional overburden are required to give the observed maturity at shallow depth. A comparison with contemporaneous sediments of DSDP Site 361, Cape Basin, which was the basin adjacent and to the north of the Falkland Plateau during the early stages of the South Atlantic Ocean, demonstrates differences in sedimentological features and in the nature of sedimentary organic matter. We interpret these differences to be the result of the different geological settings for Sites 361 and 511.
Resumo:
A high resolution mixed carbonate and siliciclastic sequence from DSDP Site 594 contains a detailed record of climate change in the late Pliocene. The sequence can be accurately dated by the LAD of Nitzschia weaveri, the LAD of Thalassiosira insigna, the LAD of T. vulnifica and the LAD of T. kolbei diatom datums. Carbonate content and delta18O signatures provide added resolution and place the sequence between isotope stage 100 and 92. The sequence contains well-preserved and diverse dinoflagellate cyst floras. Use of principal component (PCA) and canonical correspondence analyses (CCA) identifies changes in the assemblages that principally reflect warming and cooling trends. Species association with warmer climates included Impagidinium patulum, I. paradoxum and I. sp. cf. paradoxum while those from cooler climates include Invertecysta tabulata and I. velorum. CCA is shown to be a valuable method of determining the past environmental preferences of extinct species such as I. tabulata.
Resumo:
A history of Mesozoie and Cenozoic palaeoenvironments of the North Atlantie Oeean has been developed based on a detailed analysis of the temporal and spatial distribution of major pelagie sediment facies, of hiatuses. of bulk sediment accumulation rates, and of concentrations and fluxes of the main deep-sea sediment components. The depositional history of the North Atlantic can be subdivided into three major phase: (a) Late Jurassie and Early Cretaceous phase: clastic terrigenous and biogenic pelagic sediment components accumulated rapidly under highly productive surface water masses over the entire occan basin; (b) Late Cretaceous to Early Miocene phase: relatively little terrigenous and pelagic biogenic sediment reached the North Atlantic Ocean floor, intensive hiatus formation occurred at variable rates, and wide stretches of the deep-ocean floor were covered by slowly accumulating terrigenous muds: (c) Middle Miocene to Recent phase: accumulation rates of biogenic and terrigenous deep-sea sediment components increased dramatically up to Quaternary times, rates of hiatus formation and the intensity of deep-water circulation inferred from them seem to have decreased. However, accumulation rate patterns of calcareous pelagic sediment components suggest that large scale reworking and di splacement of deep-sea sediments occurred at a variable rate over wide areas of the North Atlantic during this period.
Resumo:
We provide high-resolution sea surface temperature (SST) and paleoproductivity data focusing on Termination 1. We describe a new method for estimating SSTs based on multivariate statistical analyses performed on modern coccolithophore census data, and we present the first downcore reconstructions derived from coccolithophore assemblages at Ocean Drilling Project (ODP) Site 1233 located offshore Chile. We compare our coccolithophore SST record to alkenone-based SSTs as well as SST reconstructions based on dinoflagellates and radiolaria. All reconstructions generally show a remarkable concordance. As in the alkenone SST record, the Last Glacial Maximum (LGM, 19-23 kyr B.P.) is not clearly defined in our SST reconstruction. After the onset of deglaciation, three major warming steps are recorded: from 18.6 to 18 kyr B.P. (~2.6°C), from 15.7 to 15.3 kyr B.P. (~2.5°C), and from 13 to 11.4 kyr B.P. (~3.4°C). Consistent with the other records from Site 1233 and Antarctic ice core records, we observed a clear Holocene Climatic Optimum (HCO) from ~8-12 kyr B.P. Combining the SST reconstruction with coccolith absolute abundances and accumulation rates, we show that colder temperatures during the LGM are linked to higher coccolithophore productivity offshore Chile and warmer SSTs during the HCO to lower coccolithophore productivity, with indications of weak coastal upwelling. We interpret our data in terms of latitudinal displacements of the Southern Westerlies and the northern margin of the Antarctic Circumpolar Current system over the deglaciation and the Holocene.
Resumo:
Ocean drilling has revealed that, although a minor mineral phase, native Cu ubiquitously occurs in the oceanic crust. Cu isotope systematics for native Cu from a set of occurrences from volcanic basement and sediment cover of the oceanic crust drilled at several sites in the Pacific, Atlantic and Indian oceans constrains the sources of Cu and processes that produced Cu**0. We propose that both hydrothermally-released Cu and seawater were the sources of Cu at these sites. Phase stability diagrams suggest that Cu**0 precipitation is favored only under strictly anoxic, but not sulfidic conditions at circum-neutral pH even at low temperature. In the basaltic basement, dissolution of primary igneous and potentially hydrothermal Cu-sulfides leads to Cu**0 precipitation along veins. The restricted Cu-isotope variations (delta 65Cu = 0.02-0.19 per mil) similar to host volcanic rocks suggest that Cu**0 precipitation occurred under conditions where Cu+-species were dominant, precluding Cu redox fractionation. In contrast, the Cu-isotope variations observed in the Cu**0 from sedimentary layers yield larger Cu-isotope fractionation (delta 65Cu = 0.41-0.95 per mil) suggesting that Cu**0 precipitation involved redox processes during the diagenesis, with potentially seawater as the primary Cu source. We interpret that native Cu precipitation in the basaltic basement is a result of low temperature (20°-65 °C) hydrothermal processes under anoxic, but not H2S-rich conditions. Consistent with positive delta 65Cu signatures, the sediment cover receives major Cu contribution from hydrogenous (i.e., seawater) sources, although hydrothermal contribution from plume fallout cannot be entirely discarded. In this case, disseminated hydrogenous and/or hydrothermal Cu might be diagenetically remobilized and reprecipitated as Cu**0 in reducing microenvironment.
Resumo:
DNA extraction was carried out as described on the MICROBIS project pages (http://icomm.mbl.edu/microbis ) using a commercially available extraction kit. We amplified the hypervariable regions V4-V6 of archaeal and bacterial 16S rRNA genes using PCR and several sets of forward and reverse primers (http://vamps.mbl.edu/resources/primers.php). Massively parallel tag sequencing of the PCR products was carried out on a 454 Life Sciences GS FLX sequencer at Marine Biological Laboratory, Woods Hole, MA, following the same experimental conditions for all samples. Sequence reads were submitted to a rigorous quality control procedure based on mothur v30 (doi:10.1128/AEM.01541-09) including denoising of the flow grams using an algorithm based on PyroNoise (doi:10.1038/nmeth.1361), removal of PCR errors and a chimera check using uchime (doi:10.1093/bioinformatics/btr381). The reads were taxonomically assigned according to the SILVA taxonomy (SSURef v119, 07-2014; doi:10.1093/nar/gks1219) implemented in mothur and clustered at 98% ribosomal RNA gene V4-V6 sequence identity. V4-V6 amplicon sequence abundance tables were standardized to account for unequal sampling effort using 1000 (Archaea) and 2300 (Bacteria) randomly chosen sequences without replacement using mothur and then used to calculate inverse Simpson diversity indices and Chao1 richness (doi:10.2307/4615964). Bray-Curtis dissimilarities (doi:10.2307/1942268) between all samples were calculated and used for 2-dimensional non metric multidimensional scaling (NMDS) ordinations with 20 random starts (doi:10.1007/BF02289694). Stress values below 0.2 indicated that the multidimensional dataset was well represented by the 2D ordination. NMDS ordinations were compared and tested using Procrustes correlation analysis (doi:10.1007/BF02291478). All analyses were carried out with the R statistical environment and the packages vegan (available at: http://cran.r-project.org/package=vegan), labdsv (available at: http://cran.r-project.org/package=labdsv), as well as with custom R scripts. Operational taxonomic units at 98% sequence identity (OTU0.03) that occurred only once in the whole dataset were termed absolute single sequence OTUs (SSOabs; doi:10.1038/ismej.2011.132). OTU0.03 sequences that occurred only once in at least one sample, but may occur more often in other samples were termed relative single sequence OTUs (SSOrel). SSOrel are particularly interesting for community ecology, since they comprise rare organisms that might become abundant when conditions change.16S rRNA amplicons and metagenomic reads have been stored in the sequence read archive under SRA project accession number SRP042162.