995 resultados para Production fragmentation
Resumo:
Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.
Resumo:
Report produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
Report produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
The conserved two-component regulatory system GacS/GacA determines the expression of extracellular products and virulence factors in a variety of Gram-negative bacteria. In the biocontrol strain CHA0 of Pseudomonas fluorescens, the response regulator GacA is essential for the synthesis of extracellular protease (AprA) and secondary metabolites including hydrogen cyanide. GacA was found to exert its control on the hydrogen cyanide biosynthetic genes (hcnABC) and on the aprA gene indirectly via a posttranscriptional mechanism. Expression of a translational hcnA'-'lacZ fusion was GacA-dependent whereas a transcriptional hcnA-lacZ fusion was not. A distinct recognition site overlapping with the ribosome binding site appears to be primordial for GacA-steered regulation. GacA-dependence could be conferred to the Escherichia coli lacZ mRNA by a 3-bp substitution in the ribosome binding site. The gene coding for the global translational repressor RsmA of P. fluorescens was cloned. RsmA overexpression mimicked partial loss of GacA function and involved the same recognition site, suggesting that RsmA is a downstream regulatory element of the GacA control cascade. Mutational inactivation of the chromosomal rsmA gene partially suppressed a gacS defect. Thus, a central, GacA-dependent switch from primary to secondary metabolism may operate at the level of translation.
Resumo:
Escherichia coli-based bioreporters for arsenic detection are typically based on the natural feedback loop that controls ars operon transcription. Feedback loops are known to show a wide range linear response to the detriment of the overall amplification of the incoming signal. While being a favourable feature in controlling arsenic detoxification for the cell, a feedback loop is not necessarily the most optimal for obtaining highest sensitivity and response in a designed cellular reporter for arsenic detection. Here we systematically explore the effects of uncoupling the topology of arsenic sensing circuitry on the developed reporter signal as a function of arsenite concentration input. A model was developed to describe relative ArsR and GFP levels in feedback and uncoupled circuitry, which was used to explore new ArsR-based synthetic circuits. The expression of arsR was then placed under the control of a series of constitutive promoters, which differed in promoter strength, and which could be further modulated by TetR repression. Expression of the reporter gene was maintained under the ArsR-controlled Pars promoter. ArsR expression in the systems was measured by using ArsR-mCherry fusion proteins. We find that stronger constitutive ArsR production decreases arsenite-dependent EGFP output from Pars and vice versa. This leads to a tunable series of arsenite-dependent EGFP outputs in a variety of systematically characterized circuitries. The higher expression levels and sensitivities of the response curves in the uncoupled circuits may be useful for improving field-test assays using arsenic bioreporters.
Resumo:
The hypothesis of minimum entropy production is applied to a simple one-dimensional energy balance model and is analysed for different values of the radiative forcing due to greenhouse gases. The extremum principle is used to determine the planetary “conductivity” and to avoid the “diffusive” approximation, which is commonly assumed in this type of model. For present conditions the result at minimum radiative entropy production is similar to that obtained by applying the classical model. Other climatic scenarios show visible differences, with better behaviour for the extremal case
Resumo:
The cDNA encoding the NH2-terminal 589 amino acids of the extracellular domain of the human polymeric immunoglobulin receptor was inserted into transfer vectors to generate recombinant baculo- and vaccinia viruses. Following infection of insect and mammalian cells, respectively, the resulting truncated protein corresponding to human secretory component (hSC) was secreted with high efficiency into serum-free culture medium. The Sf9 insect cell/baculovirus system yielded as much as 50 mg of hSC/liter of culture, while the mammalian cells/vaccinia virus system produced up to 10 mg of protein/liter. The M(r) of recombinant hSC varied depending on the cell line in which it was expressed (70,000 in Sf9 cells and 85-95,000 in CV-1, TK- 143B and HeLa). These variations in M(r) resulted from different glycosylation patterns, as evidenced by endoglycosidase digestion. Efficient single-step purification of the recombinant protein was achieved either by concanavalin A affinity chromatography or by Ni(2+)-chelate affinity chromatography, when a 6xHis tag was engineered to the carboxyl terminus of hSC. Recombinant hSC retained the capacity to specifically reassociate with dimeric IgA purified from hybridoma cells.
Resumo:
Résumé La fragmentation des membranes est un processus commun à beaucoup d'organelles dans une cellule. Les mitochondries, le noyau, le réticulum endoplasmique, les phagosomes, les peroxisomes, l'appareil de Golgi et les lysosomes (vacuoles chez la levure) se fragmentent en plusieurs copies en réponse à des sitmulis environnementaux, tels que des stresses, ou dans une situtation normale durant le cycle cellulaire, afin d' être transférer dans les cellules filles. La fragmentation des membranes est également observée pendant le processus d'endocytose, lors de la formation de vésicules endocytiques, mais également dans tout le traffic intracellulaire, lors de la genèse d'une vésicule de transport. Le processus de fragmentation est donc généralement important. La découverte en 1991 d'une dynamin-like GTPase comme protéine impliquée dans la fragmentation de la membrane plasmique durant l'endocytose a ouvert ce domaine de recherche. Dès lors des dynamines ont été découvertes sur la pluspart des organelles, ce qui suggère un processus de fragmentation des membranes commun à l'ensemble de la cellule. Cependant, l'ensemble des protéines impliquées ainsi que le mécanisme de la fragmentation reste encore à élucider. Mon projet de thèse était d'établir un test in vitro de fragmentation des vacuoles utile à la compréhension du mécanisme de ce processus. Le choix de ce système est judicieux pour plusieurs raisons; premièrement les vacuoles fragmentent naturellement durant le cycle cellulaire, deuxièment leur taille permet de visualiser facilement leur morphologie par simple microscopie optique, finalement elles peuvent être isolées en quantité intéressante avec un haut degré de pureté. In vivo, les vacuoles peuvent être facilement fragmentées par un stress osmotique. Un tel test permet d'identifier des protéines impliquées dans le mécanisme comme dans le criblage que j'ai effectué sur l'ensemble de la collection de délétions des gènes non-essentiels chez la levure. Cependant un test in vitro est ensuite indispensable pour jouer avec les protéines découvertes afin d'en élucider le mécanisme. Avec mon test in vitro, j'ai confirmé l'implication des protéines SNAREs dans la fragmentation et j'ai permis de comprendre la régulation de la quantité de vacuoles et de leur taille par le complexe TORC1 dans une situation de stress. 7 Résumé large public Les cellules de chaque organisme sont composées de différents compartiments appelés organelles. Chacun possède une fonction bien définie afin de permettre la vie et la croissance de la cellule. Ils sont entourés de membrane, qui joue le role de barrière spécifiquement perméable, afin de garder l'intégrité de chacun. Dans des conditions de croissance normale, les cellules prolifèrent. Durant la division cellulaire amenant à la formation d'une nouvelle cellule, chaque organelle doit se diviser afin de fournir l'ensemble des organelles à la cellule fille. La division de chaque organelle nécessite la fragmentation de la membrane les entourant. Des protéines dynamine-like GTPase ont été découvertes sur presque l'ensemble des organelles d'une cellule. Elles sont impliquées dans les processus de fragmentation des membranes. Dès lors l'idée d'un mécanisme commun est apparu. Cependant cette réaction, par sa complexité, ne peut pas impliquer une protéine unique. La découverte d'autres facteurs et la compréhension du mécanisme reste à faire. La première étape peut se faire par étude in vivo, c'est-à-dire avec des cellules entières, la deuxième étape, quant à elle, nécessite d'isoler les protéines impliquées et de jouer avec les différents paramètres, ce qui signifie donc un travail in vitro, séparé des cellules. Mon travail a constisté à établir un procédé expérimental in vitro pour étudier la fragmentation des membranes. Je travaille avec des vacuoles de levures pour étudier les réactions membranaires. Les vacuoles sont les plus grandes organelles présentes dans les levures. Elles sont impliquées principalement dans la digestion. Comme toute organelle, elles se fragmentent durant la division cellulaire. Le procédé expérimental comporte une première étape, l'isolation des vacuoles et, deuxièmement, l'incubation de celles-ci avec des composés essentiels à la réaction. En parallèle, j'ai mis en évidence, par un travail in vivo, de nouvelles protéines impliquées dans le processus de fragmentation des membranes. Ceci a été fait en réalisant un criblage par microscopie d'une collection de mutants. Parmi ces mutants, j'ai cherché ceux qui présentaient un défaut dans la fragmentation des vacuoles. Ces deux procédés expérimentaux, in vitro et in vivo, m'ont permis de découvrir de nouvelles protéines impliquées dans cette réaction, ainsi que de mettre en évidence un mécanisme utlilisé par la cellule pour réguler la fragmentation des vacuoles. 8 Summary Fragmentation of membranes is common for many organelles in a cell. Mitochondria, nucleus, endoplasmic reticulum, phagosomes, peroxisomes, Golgi and lysosomes (vacuoles in yeast) fragment into multiple copies in response to environmental stimuli, such as stresses, or in a normal situation during the cell cycle in order to be transferred into the daughter cell. Fragmentation of membrane occurs during endocytosis, at the latest step in endocytic vesicle formation, and also in intracellular trafficking, when traffic vesicles bud. This field of research was opened in 1991 when a dynamin-like GTPase was found to be involved in fragmentation of the plasma membrane during endocytosis. Since dynamin-like GTPases have been found on most organelles, similarities in their mechanisms of fragmentation might exist. However, many proteins involved in the mechanism of fragmentation remain unknown. My thesis project was to establish an in vitro assay for membrane fragmentation in order to create a tool to study the mechanism of this process. I chose vacuoles as a model organelle for several reasons: first of all, vacuoles fragment under physiological conditions during cell cycle, secondly their size makes their morphology easily visible under the light microscope, and finally vacuoles can be isolated in good amounts with relatively high degrees of purity. In vivo, vacuole fragmentation can be induced with an osmotic shock. Such a simple assay facilitates the identification of new proteins involved in the process. I used this tool to screen of the entire knockout collection of non-essential genes in Saccharomyces cerevisiae for mutants defective in vacuole fragmentation. The in vitro system will be useful to characterize the mutants and to study the mechanism of fragmentation in detail. I used my in vitro assay to confirm the involvement of vacuolar SNARE proteins in fragmentation of the organelle and to uncover that number and size of vacuoles in the cell is regulated by the TORC1 complex via selective stimulation of fragmentation activity.
Resumo:
Since the mid 90's, international actors as well as governmental actors have raised their interest into the development of irrigation's potential that is still largely unexploited in Niger. It seems all the more interesting as it could answer the needs of a fast growing population (3.3% per year). However, if everyone agrees on the need to development this system, the current implementation triggers questions on the process itself and its side effects. National and international policies on this matter were build upon an historical process through colonial, post-colonial and then the late 1980's neoliberal structures, leading to a business model that reveals a discrepancy between the state logic and the farming one. This business model asks for a high capacity of mobilization of resources unachievable for many, especially when they want to address small-scale irrigation (area
Resumo:
The B cell-activating factor from the tumor necrosis factor family (BAFF) is an important regulator of B cell immunity. Recently, we demonstrated that recombinant BAFF also provides a co-stimulatory signal to T cells. Here, we studied expression of BAFF in peripheral blood leukocytes and correlated this expression with BAFF T cell co-stimulatory function. BAFF is produced by antigen-presenting cells (APC). Blood dendritic cells (DC) as well as DC differentiated in vitro from monocytes or CD34+ stem cells express BAFF mRNA. Exposure to bacterial products further up-regulates BAFF production in these cells. A low level of BAFF transcription, up-regulated upon TCR stimulation, was also detected in T cells. Functionally, blockade of endogenous BAFF produced by APC and, to a lesser extent, by T cells inhibits T cell activation. Altogether, this indicates that BAFF may regulate T cell immunity during APC-T cell interactions and as an autocrine factor once T cells have detached from the APC.
Resumo:
Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles-the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment.
Resumo:
Intensity modulated radiotherapy (IMRT) is a conformal radiotherapy that produces concave and irregular target volume dose distributions. IMRT has a potential to reduce the volume of healthy tissue irradiated to a high dose, but this often at the price of an increased volume of normal tissue irradiated to a low dose. Clinical benefits of IMRT are expected to be most pronounced at the body sites where sensitive normal tissues surround or are located next to a target with a complex 3D shape. The irradiation doses needed for tumor control are often markedly higher than the tolerance of the radiation sensitive structures such as the spinal cord, the optic nerves, the eyes, or the salivary glands in the treatment of head and neck cancer. Parotid gland salivary flow is markedly reduced following a cumulative dose of 30 50 Gy given with conventional fractionation and xerostomia may be prevented in most patients using a conformal parotid-sparing radiotherapy technique. However, in cohort studies where IMRT was compared with conventional and conformal radiotherapy techniques in the treatment of laryngeal or oropharyngeal carcinoma, the dosimetric advantage of IMRT translated into a reduction of late salivary toxicity with no apparent adverse impact on the tumor control. IMRT might reduce the radiation dose to the major salivary glands and the risk of permanent xerostomia without compromizing the likelihood for cure. Alternatively, IMRT might allow the target dose escalation at a given level of normal tissue damage. We describe here the clinical results on postirradiation salivary gland function in head and neck cancer patients treated with IMRT, and the technical aspects of IMRT applied. The results suggest that the major salivary gland function can be maintained with IMRT without a need to compromise the clinical target volume dose, or the locoregional control.
Resumo:
An unusual subset of mature T cells expresses natural killer (NK) cell-related surface markers such as interleukin-2 receptor beta (IL-2R beta; CD122) and the polymorphic antigen NK1.1. These "NK-like" T cells are distinguished by their highly skewed V alpha and V beta repertoire and by their ability to rapidly produce large amounts of IL-4 upon T cell receptor (TCR) engagement. The inbred mouse strain SJL (which expresses NK1.1 on its NK cells) has recently been reported to lack NK1.1+ T cells and consequently to be deficient in IL-4 production upon TCR stimulation. We show here, however, that SJL mice have normal numbers of IL-2R beta+ T cells with a skewed V beta repertoire characteristic of "NK-like" T cells. Furthermore lack of NK1.1 expression on IL-2R beta+ T cells in SJL mice was found by backcross analysis to be controlled by a single recessive gene closely linked to the NKR-P1 complex on chromosome 6 (which encodes the NK1.1 antigen). Analysis of a panel of inbred mouse strains further demonstrated that lack of NK1.1 expression on IL-2R beta+ T cells segregated with NKR-P1 genotype (as assessed by restriction fragment length polymorphism) and thus was not restricted to the SJL strain. In contrast, defective TCR induced IL-4 production (which appeared to be a unique property of SJL mice) seems to be controlled by two recessive genes unlinked to NKR-P1. Collectively, our data indicate that "NK-like" T cells develop normally in SJL mice despite genetically distinct defects in NK1.1 expression and inducible IL-4 production.
Resumo:
The carbon dioxide production of the chick embryo cultured in vitro has been determined during the first 24 h of post-laying development using a non-invasive conductometric microtechnique. The mean CO2 production of the whole blastoderm (1) increased from 16 nmol/h at laying to 231 nmol/h at early neurulation, (2) became dependent on exogenous glucose and (3) was closely linked to mechanical tension generated in the blastoderm (loosening from vitelline membrane resulted in a decrease of 56%). In our experimental conditions, no significant influence of carbonic anhydrase on the CO2 production has been detected. The value of the respiratory exchange ratio varied from about 3 at pregastrular stages to 1 at neurula stage and CO2 was produced transiently in presence of antimycin A. Such results indicate that the source of CO2 is not exclusively mitochondrial and that the relative proportions of mitochondrial and non-mitochondrial CO2 productions might vary significantly throughout the early development. Our findings confirm that the metabolism of the chick embryo becomes more and more oxidative from laying onwards and suggest that the modifications of metabolism observed during the studied period of development could be associated with functional differentiation.