985 resultados para Process machine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ethical conflicts are arising as a result of the growing complexity of clinical care, coupled with technological advances. Most studies that have developed instruments for measuring ethical conflict base their measures on the variables"frequency" and"degree of conflict". In our view, however, these variables are insufficient for explaining the root of ethical conflicts. Consequently, the present study formulates a conceptual model that also includes the variable"exposure to conflict", as well as considering six"types of ethical conflict". An instrument was then designed to measure the ethical conflicts experienced by nurses who work with critical care patients. The paper describes the development process and validation of this instrument, the Ethical Conflict in Nursing Questionnaire Critical Care Version (ECNQ-CCV). Methods: The sample comprised 205 nursing professionals from the critical care units of two hospitals in Barcelona (Spain). The ECNQ-CCV presents 19 nursing scenarios with the potential to produce ethical conflict in the critical care setting. Exposure to ethical conflict was assessed by means of the Index of Exposure to Ethical Conflict (IEEC), a specific index developed to provide a reference value for each respondent by combining the intensity and frequency of occurrence of each scenario featured in the ECNQ-CCV. Following content validity, construct validity was assessed by means of Exploratory Factor Analysis (EFA), while Cronbach"s alpha was used to evaluate the instrument"s reliability. All analyses were performed using the statistical software PASW v19. Results: Cronbach"s alpha for the ECNQ-CCV as a whole was 0.882, which is higher than the values reported for certain other related instruments. The EFA suggested a unidimensional structure, with one component accounting for 33.41% of the explained variance. Conclusions: The ECNQ-CCV is shown to a valid and reliable instrument for use in critical care units. Its structure is such that the four variables on which our model of ethical conflict is based may be studied separately or in combination. The critical care nurses in this sample present moderate levels of exposure to ethical conflict. This study represents the first evaluation of the ECNQ-CCV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ethical conflicts are arising as a result of the growing complexity of clinical care, coupled with technological advances. Most studies that have developed instruments for measuring ethical conflict base their measures on the variables"frequency" and"degree of conflict". In our view, however, these variables are insufficient for explaining the root of ethical conflicts. Consequently, the present study formulates a conceptual model that also includes the variable"exposure to conflict", as well as considering six"types of ethical conflict". An instrument was then designed to measure the ethical conflicts experienced by nurses who work with critical care patients. The paper describes the development process and validation of this instrument, the Ethical Conflict in Nursing Questionnaire Critical Care Version (ECNQ-CCV). Methods: The sample comprised 205 nursing professionals from the critical care units of two hospitals in Barcelona (Spain). The ECNQ-CCV presents 19 nursing scenarios with the potential to produce ethical conflict in the critical care setting. Exposure to ethical conflict was assessed by means of the Index of Exposure to Ethical Conflict (IEEC), a specific index developed to provide a reference value for each respondent by combining the intensity and frequency of occurrence of each scenario featured in the ECNQ-CCV. Following content validity, construct validity was assessed by means of Exploratory Factor Analysis (EFA), while Cronbach"s alpha was used to evaluate the instrument"s reliability. All analyses were performed using the statistical software PASW v19. Results: Cronbach"s alpha for the ECNQ-CCV as a whole was 0.882, which is higher than the values reported for certain other related instruments. The EFA suggested a unidimensional structure, with one component accounting for 33.41% of the explained variance. Conclusions: The ECNQ-CCV is shown to a valid and reliable instrument for use in critical care units. Its structure is such that the four variables on which our model of ethical conflict is based may be studied separately or in combination. The critical care nurses in this sample present moderate levels of exposure to ethical conflict. This study represents the first evaluation of the ECNQ-CCV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information concerning standard design practices and details for the Iowa Department of Transportation (IDOT) was provided to the research team. This was reviewed in detail so that the researchers would be familiar with the terminology and standard construction details. A comprehensive literature review was completed to gather information concerning constructability concepts applicable to bridges. It was determined that most of the literature deals with constructability as a general topic with only a limited amount of literature with specific concepts for bridge design and construction. Literature was also examined concerning the development of appropriate microcomputer databases. These activities represent completion of Task 1 as identified in the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a two-level model of concurrent communicating systems (CCS) to serve as a basis formachine consciousness. A language implementing threads within logic programming is ¯rstintroduced. This high-level framework allows for the de¯nition of abstract processes that can beexecuted on a virtual machine. We then look for a possible grounding of these processes into thebrain. Towards this end, we map abstract de¯nitions (including logical expressions representingcompiled knowledge) into a variant of the pi-calculus. We illustrate this approach through aseries of examples extending from a purely reactive behavior to patterns of consciousness.