935 resultados para Probe Force Microscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small devices, in the range of nanometers, are playing a major role in today's technology. The field of nanotechnology is concerned with materials and systems whose structures and components exhibit novel and significantly improved physical, chemical and biological properties, phenomena and processes due to their small nanoscale size. Researches more and more are finding that structural features in the range of about 1 to 100 nanometers behave quite differently than isolated molecules (1 nanometer) or bulk materials. For comparison, a 10 nanometer structure is 1000 times smaller than the diameter of a human hair. The virtues of working in the nanodomain are increasingly recognized by the scientific community and discussed in the popular press. The use of such devices is expected to revolutionize our industries and lives. ^ This work mainly focuses on the fabrication, characterization and discovery of new nanostructured thin films. This research consists of the design of a new high-deposition rate nanoparticle machine for depositing nanostructured films from beams of nanoparticles and investigation film's unique optical and physical properties.^ A high-deposition rate nanoparticle machine was designed, built and successfully tested. Different nanostructured thin films were deposited from Copper, Gold, Iron and Zirconium targets with the grain size of between 1 to 20 nm under different conditions. Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and x-ray diffraction (XRD) confirmed nanoscale grain size structures of deposited films. The optical properties of the nanostructured films deposited from copper, Iron and Zirconium targets were significantly different from optical properties of bulk and thin films. Zr, Cu and Fe films were transparent. Gold films revealed an epitaxial contact with the silicon substrate with interesting crystal structures. ^ The new high-deposition rate nanoparticle machine was able to deposit new nanostructured films with different properties from bulk and thin films reported in the literatures. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of patterning methods including conventional photo-lithography and E-beam lithography have been employed to pattern devices with critical dimensions of submicrometer levels. The methods of device fabrication by lithography and multilevel processing are usually specific to the chemical and physical properties of the etchants and materials used, and require a number of processing steps. As an alternative, focused ion beam (FIB) lithography is a unique and straightforward tool to rapidly develop nanomagnetic prototyping devices. This feature of FIB is critical to conduct the basic study necessary to advance the state-of-the-art in magnetic recording. ^ The dissertation develops a specific design of nanodevices and demonstrates FIB-fabricated stable and reproducible magnetic nanostructures with a critical dimension of about 10 nm. The project included the fabrication of a patterned single and multilayer magnetic media with areal densities beyond 10 Terabit/in 2. Each block had perpendicular or longitudinal magnetic anisotropy and a single domain structure. The purpose was to demonstrate how the ability of FIB to directly etch nanoscale patterns allowed exploring (even in the academic environment) the true physics of various types of nanostructures. ^ Another goal of this study was the investigation of FIB patterned magnetic media with a set of characterization tools: e.g. Spinstand Guzik V2002, magnetic force microscopy, scanning electron microscopy with energy dispersive system and wavelength dispersive system. ^ In the course of this work, a unique prototype of a record high density patterned magnetic media device capable of 10 terabit/in 2 was built. The read/write testing was performed by a Guzik spinstand. The readback signals were recorded and analyzed by a digital oscilloscope. A number of different configurations for writing and reading information from a magnetic medium were explored. The prototype transducers for this work were fabricated via FIB trimming of different magnetic recording heads. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently the data storage industry is facing huge challenges with respect to the conventional method of recording data known as longitudinal magnetic recording. This technology is fast approaching a fundamental physical limit, known as the superparamagnetic limit. A unique way of deferring the superparamagnetic limit incorporates the patterning of magnetic media. This method exploits the use of lithography tools to predetermine the areal density. Various nanofabrication schemes are employed to pattern the magnetic material are Focus Ion Beam (FIB), E-beam Lithography (EBL), UV-Optical Lithography (UVL), Self-assembled Media Synthesis and Nanoimprint Lithography (NIL). Although there are many challenges to manufacturing patterned media, the large potential gains offered in terms of areal density make it one of the most promising new technologies on the horizon for future hard disk drives. Thus, this dissertation contributes to the development of future alternative data storage devices and deferring the superparamagnetic limit by designing and characterizing patterned magnetic media using a novel nanoimprint replication process called "Step and Flash Imprint lithography". As opposed to hot embossing and other high temperature-low pressure processes, SFIL can be performed at low pressure and room temperature. Initial experiments carried out, consisted of process flow design for the patterned structures on sputtered Ni-Fe thin films. The main one being the defectivity analysis for the SFIL process conducted by fabricating and testing devices of varying feature sizes (50 nm to 1 μm) and inspecting them optically as well as testing them electrically. Once the SFIL process was optimized, a number of Ni-Fe coated wafers were imprinted with a template having the patterned topography. A minimum feature size of 40 nm was obtained with varying pitch (1:1, 1:1.5, 1:2, and 1:3). The Characterization steps involved extensive SEM study at each processing step as well as Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS) , Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 x 800 nm) to (115 x 115µm), and (800 x 800 nm) to (40 x 40 µm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 x 115 µm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3) 63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoparticles have enormous potential in diagnostic and therapeutic studies. We have demonstrated that the amyloid beta mixed with and conjugated to dihydrolipoic acid- (DHLA) capped CdSe/ZnS quantum dots (QDs) of size approximately 2.5 nm can be used to reduce the fibrillation process. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used as tools for analysis of fibrillation. There is a significant change in morphology of fibrils when amyloid β (1–42) (Aβ (1–42)) is mixed or conjugated to the QDs. The length and the width of the fibrils vary under modified conditions. Thioflavin T (ThT) fluorescence supports the decrease in fibril formation in presence of DHLA-capped QDs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the formation of stripe domains in permalloy (NisoFe20) thin films was investigated mainly utilizing magnetic force microscopy. Stripe domains are a known phenomenon, which reduces the "softness" of magnetic material and introduces a significant source of noise when used in perpendicular magnetic media. For the particular setup mentioned in this report, a critical thickness for stripe domains initiation depended on the sputtering rate, the substrate temperature, and the film thickness. Beyond the stripe domain formation, an increase in the periodicity of highly ordered stripe domains was evident with increasing film thickness. Above a particular thickness, stripe domains periodicity decreased along with magnetic domain randomization. The results led to the inference that the perpendicular anisotropy responsible for the formation of stripe domains originated mainly from magnetostriction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One innovative thought in biomolecular electronics is the exploitation of electron transfer proteins. Using nature's self assembly techniques, proteins can build highly organized edifices with retained functional activity, and they can serve as platforms for biosensors. In this research work, Yeast Cytochrome C (YCC) is immobilized with a help of a linker molecule, 3-Mercaptopropyltrimethoxysilane (3-MPTS) on a hydroxylated surface of a silicon substrate. Atomic Force Microscopy (AFM) is used for characterization. AFM data shows immobilization of one YCC molecule in between eight grids that are formed by the linker molecules. 3-MPTS monolayers are organized in grids that are 1.2 nm apart. Immobilization of 3-MPTS was optimized using a concentration of 5 mM in a completely dehydrated state for 30 minutes. The functionally active grids of YCC can now be incorporated with Cytochrome C oxidase on a Platinum electrode surface for transfer of electrons in development of biosensors, such as nitrate sensor, that are small in size, cheaper, and easier to manufacture than the top-down approach of fabrication of molecular biodevices

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyelectrolyte complexes (PECs) nanoparticles were prepared using chitosan and sodium polymethacrylate. The complex formation was investigated using turbidimetry, conductometry, viscometry, and dynamic light scattering. The presence of excess positive charges was evidenced by zeta potential measurements. The particle diameter was characterized by dynamic light scattering and the morphology by atomic force microscopy. In all experiments an abrupt change in behavior was observed at a carboxyl:amino molar ratio around 0.7−0.8. Those changes in behavior were related to a proposed mechanism of complex formation based on the decrease of macromolecular dimensions of soluble polyelectrolyte complex clusters, followed by phase segregation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The plasma nitriding has been used in industrial and technological applications for large-scale show an improvement in the mechanical, tribological, among others. In order to solve problems arising in the conventional nitriding, for example, rings constraint (edge effect) techniques have been developed with different cathodes. In this work, we studied surfaces of commercially pure titanium (Grade II), modified by plasma nitriding treatment through different settings cathodes (hollow cathode, cathodic cage with a cage and cathodic cage with two cages) varying the temperature 350, 400 and 430oC, with the goal of obtaining a surface optimization for technological applications, evaluating which treatment generally showed better results under the substrate. The samples were characterized by the techniques of testing for Atomic Force Microscopy (AFM), Raman spectroscopy, microhardness, X-ray diffraction (XRD), and a macroscopic analysis. Thus, we were able to evaluate the processing properties, such as roughness, topography, the presence of interstitial elements, hardness, homogeneity, uniformity and thickness of the nitrided layer. It was observed that all samples were exposed to nitriding modified relative to the control sample (no treatment) thus having increased surface hardness, the presence of TiN observed by XRD as per both Raman and a significant change in the roughness of the treated samples . It was found that treatment in hollow cathode, despite having the lowest value of microhardness between treated samples, was presented the lowest surface roughness, although this configuration samples suffer greater physical aggressiveness of treatment

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to analyze the biological response of titanium surfaces modified by plasma Ar + N2 + H2. Titanium disks grade II received different surface treatments Ar + N2 + H2 plasma, constituting seven groups including only polished samples used as standard. Before and after treatment the samples were evaluated in terms of topography, crystal structure and wettability, using atomic force microscopy, X-ray diffraction, Raman spectroscopy and testing of the sessile drop, respectively. Rich plasma (PRP) was applied to the surfaces modified in culture plates. Images obtained by scanning electron microscopy of the adhered platelets were analyzed to verify the behavior of platelets in the different experimental conditions. We verified that the adition of H2 on plasma atmosphere resulted in more rough surfaces, with round tops. These surfaces, in contrast to that surfaces treated with high concentration of N2, are less propense to platelet aggregation and, consequently, to the formation of thrombus when applied in biomedical devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ferroelectric ceramics with perovskite structure (ABO3) are widely used in solid state memories (FeRAM’s and DRAM's) as well as multilayered capacitors, especially as a thin films. When doped with zirconium ions, BaTiO3-based materials form a solid solution known as barium zirconate titanate (BaTi1-xZrxO3). Also called BZT, this material can undergo significant changes in their electrical properties for a small variation of zirconium content in the crystal lattice. The present work is the study of the effects of deposition parameters of BaTi0,75Zr0,25O3 thin films by spin-coating method on their morphology and physical properties, through an experimental design of the Box-Behnken type. The resin used in the process has been synthesized by the polymeric precursor method (Pechini) and subsequently split into three portions each of which has its viscosity adjusted to 10, 20 and 30 mPa∙s by means of a rotary viscometer. The resins were then deposited on Pt/Ti/SiO2/Si substrates by spin-coating method on 15 different combinations of viscosity, spin speed (3000, 5500 and 8000 rpm) and the number of deposited layers (5, 8 and 11 layers) and then calcined at 800 ° C for 1 h. The phase composition of the films was analyzed by X-ray diffraction (XRD) and indexed with the JCPDS 36-0019. Surface morphology and grain size were observed by atomic force microscopy (AFM) indicating uniform films and average grain size around 40 nm. Images of the cross section of the films were obtained by scanning electron microscopy field emission (SEM-FEG), indicating very uniform thicknesses ranging from 140-700 nm between samples. Capacitance measurements were performed at room temperature using an impedance analyzer. The films presented dielectric constant values of 55-305 at 100kHz and low dielectric loss. The design indicated no significant interaction effects between the deposition parameters on the thickness of the films. The response surface methodology enabled better observes the simultaneous effect of variables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.