998 resultados para Portabel Document Format


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical-absorption spectrum of a cationic Ag0 atom in a KCl crystal has been studied theoretically by means of a series of cluster models of increasing size. Excitation energies have been determined by means of a multiconfigurational self-consistent field procedure followed by a second-order perturbation correlation treatment. Moreover results obtained within the density-functional framework are also reported. The calculations confirm the assignment of bands I and IV to transitions of the Ag-5s electron into delocalized states with mainly K-4s,4p character. Bands II and III have been assigned to internal transitions on the Ag atom, which correspond to the atomic Ag-4d to Ag-5s transition. We also determine the lowest charge transfer (CT) excitation energy and confirm the assignment of band VI to such a transition. The study of the variation of the CT excitation energy with the Ag-Cl distance R gives additional support to a large displacement of the Cl ions due to the presence of the Ag0 impurity. Moreover, from the present results, it is predicted that on passing to NaCl:Ag0 the CT onset would be out of the optical range while the 5s-5p transition would undergo a redshift of 0.3 eV. These conclusions, which underline the different character of involved orbitals, are consistent with experimental findings. The existence of a CT transition in the optical range for an atom inside an ionic host is explained by a simple model, which also accounts for the differences with the more common 3d systems. The present study sheds also some light on the R dependence of the s2-sp transitions due to s2 ions like Tl+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results are presented of a combined periodic and cluster model approach to the electronic structure and magnetic interactions in the spin-chain compounds Ca2CuO3 and Sr2CuO3. An extended t-J model is presented that includes in-chain and interchain hopping and magnetic interaction processes with parameters extracted from ab initio calculations. For both compounds, the in-chain magnetic interaction is found to be around -240 meV, larger than in any of the other cuprates reported in the literature. The interchain magnetic coupling is found to be weakly antiferromagnetic, -1 meV. The effective in-chain hopping parameters are estimated to be ~650 meV for both compounds, whereas the value of the interchain hopping parameter is 30 meV for Sr2CuO3 and 40 meV for Ca2CuO3, in line with the larger interchain distance in the former compound. These effective parameters are shown to be consistent with expressions recently suggested for the Néel temperature and the magnetic moments, and with relations that emerge from the t-J model Hamiltonian. Next, we investigate the physical nature of the band gap. Periodic calculations indicate that an interpretation in terms of a charge-transfer insulator is the most appropriate one, in contrast to the suggestion of a covalent correlated insulator recently reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic structure of the edge-sharing cuprate compound Li2CuO2 has been investigated with highly correlated ab initio electronic structure calculations. The first- and second-neighbor in-chain magnetic interactions are calculated to be 142 and -22 K, respectively. The ratio between the two parameters is smaller than suggested previously in the literature. The interchain interactions are antiferromagnetic in nature and of the order of a few K only. Monte Carlo simulations using the ab initio parameters to define the spin model Hamiltonian result in a Nel temperature in good agreement with experiment. Spin population analysis situates the magnetic moment on the copper and oxygen ions between the completely localized picture derived from experiment and the more delocalized picture based on local-density calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charged and neutral oxygen vacancies in the bulk and on perfect and defective surfaces of MgO are characterized as quantum-mechanical subsystems chemically bonded to the host lattice and containing most of the charge left by the removed oxygens. Attractors of the electron density appear inside the vacancy, a necessary condition for the existence of a subsystem according to the atoms in molecules theory. The analysis of the electron localization function also shows attractors at the vacancy sites, which are associated to a localization basin shared with the valence domain of the nearest oxygens. This polyatomic superanion exhibits chemical trends guided by the formal charge and the coordination of the vacancy. The topological approach is shown to be essential to understand and predict the nature and chemical reactivity of these objects. There is not a vacancy but a coreless pseudoanion that behaves as an activated host oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains can be due to oxygen incorporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the bridging ligand on the effective Heisenberg coupling parameters is analyzed in detail. This analysis strongly suggests that the ligand-to-metal charge transfer excitations are responsible for a large part of the final value of the magnetic coupling constant. This permits us to suggest a variant of the difference dedicated configuration interaction (DDCI) method, presently one of the most accurate and reliable for the evaluation of magnetic effective interactions. This method treats the bridging ligand orbitals mediating the interaction at the same level than the magnetic orbitals and preserves the high quality of the DDCI results while being much less computationally demanding. The numerical accuracy of the new approach is illustrated on various systems with one or two magnetic electrons per magnetic center. The fact that accurate results can be obtained using a rather reduced configuration interaction space opens the possibility to study more complex systems with many magnetic centers and/or many electrons per center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of an isolated oxygen vacancy in SrTiO3 has been investigated with a variety of ab initio quantum mechanical approaches. In particular we compared pure density functional theory (DFT) approaches with the Hartree-Fock method, and with hybrid methods where the exchange term is treated in a mixed way. Both local cluster models and periodic calculations with large supercells containing up to 80 atoms have been performed. Both diamagnetic (singlet state) and paramagnetic (triplet state) solutions have been considered. We found that the formation of an O vacancy is accompanied by the transfer of two electrons to the 3d(z2) orbitals of the two Ti atoms along the Ti-Vac-Ti axis. The two electrons are spin coupled and the ground state is diamagnetic. New states associated with the defect center appear in the gap just below the conduction band edge. The formation energy computed with respect to an isolated oxygen atom in the triplet state is 9.4 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of generation of atomic Na and K from SiO2 samples has been studied using explicitly correlated wave function and density functional theory cluster calculations. Possible pathways for the photon and electron stimulated desorption of Na and K atoms from silicates are proposed, thus providing new insight on the generation of the tenuous Na and K atmosphere of the Moon.