949 resultados para Polymorphism, Single Nucleotide


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The progesterone receptor (PR) is a candidate gene for the development of endometriosis, a complex disease with strong hormonal features, common in women of reproductive age. We typed the 306 base pair Alu insertion (AluIns) polymorphism in intron G of PR in 101 individuals, estimated linkage disequilibrium (LD) between five single-nucleotide polymorphisms (SNPs) across the PR locus in 980 Australian triads (endometriosis case and two parents) and used transmission disequilibrium testing (TDT) for association with endometriosis. The five SNPs showed strong pairwise LD, and the AluIns was highly correlated with proximal SNPs rs1042839 ({Delta}2 = 0.877, D9 = 1.00, P < 0.0001) and rs500760 ({Delta}2 = 0.438, D9 = 0.942, P < 0.0001). TDT showed weak evidence of allelic association between endometriosis and rs500760 (P = 0.027) but not in the expected direction. We identified a common susceptibility haplotype GGGCA across the five SNPs (P = 0.0167) in the whole sample, but likelihood ratio testing of haplotype transmission and non-transmission of the AluIns and flanking SNPs showed no significant pattern. Further, analysis of our results pooled with those from two previous studies suggested that neither the T2 allele of the AluIns nor the T1/T2 genotype was associated with endometriosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The low-activity variant of the aldehyde dehydrogenase 2 (ALDH2) gene found in East Asian populations leads to the alcohol flush reaction and reduces alcohol consumption and risk of alcohol dependence (AD). We have tested whether other polymorphisms in the ALDH2 gene have similar effects in people of European ancestry. Methods: Serial measurements of blood and breath alcohol, subjective intoxication, body sway, skin temperature, blood pressure, and pulse were obtained in 412 twins who took part in an alcohol challenge study. Participants provided data on alcohol reactions, alcohol consumption, and symptoms related to AD at the time of the study and subsequently. Haplotypes based on 5 single-nucleotide polymorphisms (SNPs) were used in tests of the effects of variation in the ALDH2 gene on alcohol metabolism and alcohol's effects. Results: The typed SNPs were in strong linkage disequilibrium and 2 complementary haplotypes comprised 83% of those observed. Significant effects of ALDH2 haplotype were observed for breath alcohol concentration, with similar but smaller and nonsignificant effects on blood alcohol. Haplotype-related variation in responses to alcohol, and reported alcohol consumption, was small and not consistently in the direction predicted by the effects on alcohol concentrations. Conclusions: Genetic variation in ALDH2 affects alcohol metabolism in Europeans. However, the data do not support the hypothesis that this leads to effects on alcohol sensitivity, consumption, or risk of dependence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As resistance genes have been shown to contain conserved motifs and cluster in many plant genomes, the identification of resistance gene analogues can be used as a strategy for both the discovery of DNA markers linked to disease resistance loci and the map-based cloning of disease resistance genes. Sugarcane suffers from many important diseases and an analysis of resistance gene analogues offers a means to identify DNA markers linked to resistance loci. However, sugarcane has the most complex genome of any crop plant and initially it is important to understand the extent of resistance gene analogue diversity in the sugarcane genome before genetic analysis. We review herein how more than 100 expressed sequence tags with homology to different resistance genes have been identified in sugarcane with many mapped as single-dose restriction fragment length polymorphism markers. Importantly, some of these resistance gene analogues have been shown to be linked to disease resistance genes or disease quantitative trait loci. In an attempt to more efficiently analyse additional resistance gene analogues in sugarcane, we report on experiments aimed at investigating the molecular diversity of several resistance gene analogue families using a modified form of a technique termed Ecotilling. Using Ecotilling, we were able to rapidly detect single nucleotide polymorphisms in fragments amplified by PCR from four different resistance gene analogue families, SoRP1D, SoPTO, SoXa21 and SoHs1pro-1. An analysis of a diverse set of sugarcane varieties, including modern sugarcane cultivars and several S. officinarum and S. spontaneum clones, indicated that all amplicons, apart from SoHs1pro-1, contained significant polymorphism within the gene region studied. However, a comparison among these sugarcane clones, including between the parents of two sugarcane mapping populations, indicated that most polymorphisms were multi-dose, not single-dose, preventing their genetic map location or association with disease susceptibility or resistance from being determined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Little is known about the extent of allelic diversity of genes in the complex polyploid, sugarcane. Using sucrose phosphate synthase (SPS) Gene (SPS) Family III as an example, we have amplified and sequenced a 400 nt region from this gene from two sugarcane lines that are parents of a mapping population. Ten single nucleotide polymorphisms (SNPs) were identified within the 400 nt region of which seven were present in both lines. In the elite commercial cultivar Q165(A), 10 sequence haplotypes were identified, with four haplotypes recovered at 9% or greater frequency. Based on SNP presence, two clusters of haplotypes were observed. In IJ76-514, a Saccharum officinarum accession, 8 haplotypes were identified with 4 haplotypes recovered at 13% or greater frequency. Again, two clusters of haplotypes were observed. The results suggest that there may be two SPS Gene Family III genes per genome in sugarcane, each with different numbers of different alleles. This suggestion is supported by sequencing results in an elite parental sorghum line, 403463-2-1, in which 4 haplotypes, corresponding to two broad types, were also identified. Primers were designed to the sugarcane SNPs and screened over bulked DNA from high and low Sucrose-containing progeny from a cross between Q165(A) and IJ76-514. The SNP frequency did not vary in the two bulked DNA samples, suggesting that these SNPs from this SPS gene family are not associated with variation in sucrose content. Using an ecotilling approach, two of the SPS Gene Family III haplotypes were mapped to two different linkage groups in homology group 1 in Q165(A). Both haplotypes mapped near QTLs for increased sucrose content but were not themselves associated with any sugar-related trait.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Large-scale gene discovery has been performed for the grass fungal endophytes Neotyphodium coenophialum, Neotyphodium lolii, and Epichloe festucae. The resulting sequences have been annotated by comparison with public DNA and protein sequence databases and using intermediate gene ontology annotation tools. Endophyte sequences have also been analysed for the presence of simple sequence repeat and single nucleotide polymorphism molecular genetic markers. Sequences and annotation are maintained within a MySQL database that may be queried using a custom web interface. Two cDNA-based microarrays have been generated from this genome resource, They permit the interrogation of 3806 Neotyphodium genes (Nchip (TM) rnicroarray), and 4195 Neotyphodium and 920 Epichloe genes (EndoChip (TM) microarray), respectively. These microarrays provide tools for high-throughput transcriptome analysis, including genome-specific gene expression studies, profiling of novel endophyte genes, and investigation of the host grass-symbiont interaction. Comparative transcriptome analysis in Neotyphodium and Epichloe was performed. (c) 2006 Elsevier

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endometriosis is a common gynaecological disease with symptoms of pelvic pain and infertility which affects 7-10% of women in their reproductive years. Activation of an oncogenic allele of Kirsten rat sarcoma viral oncogene homologue (KRAS) in the reproductive tract of mice resulted in the development of endometriosis. We hypothesized that variation in KRAS may influence risk of endometriosis in humans. Thirty tagSNPs spanning a region of 60.7 kb across the KRAS locus were genotyped using iPLEX chemistry on a MALDI-TOF MassARRAY platform in 959 endometriosis cases and 959 unrelated controls, and data were analysed for association with endometriosis. Genotypes were obtained for most individuals with a mean completion rate of 99.1%. We identified six haplotype blocks across the KRAS locus in our sample. There were no significant differences between cases and controls in the frequencies of individual single-nucleotide polymorphisms (SNPs) or haplotypes. We also developed a rapid method to screen for 11 common KRAS and BRAF mutations on the Sequenom MassARRAY system. The assay detected all mutations previously identified by direct sequencing in a panel of positive controls. No germline variants for KRAS or BRAF were detected. Our results demonstrate that any risk of endometriosis in women because of common variation in KRAS must be very small.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One approach to microbial genotyping is to make use of sets of single-nucleotide polymorphisms (SNPs) in combination with binary markers. Here we report the modification and automation of a SNP-plus-binary-marker-based approach to the genotyping of Staphylococcus aureus and its application to 391 S. aureus isolates from southeast Queensland, Australia. The SNPs used were arcC210, tpi243, arcC162, gmk318, pta294, tpi36, tpi241, and pta383. These provide a Simpson's index of diversity (D) of 0.95 with respect to the S. aureus multilocus sequence typing database and define 61 genotypes and the major clonal complexes. The binary markers used were pvl, cna, sdrE, pT181, and pUB110. Two novel real-time PCR formats for interrogating these markers were compared. One of these makes use of light upon extension (LUX) primers and biplexed reactions, while the other is a streamlined modification of kinetic PCR using SYBR green. The latter format proved to be more robust. In addition, automated methods for DNA template preparation, reaction setup, and data analysis were developed. A single SNP-based method for ST-93 (Queensland clone) identification was also devised. The genotyping revealed the numerical importance of the South West Pacific and Queensland community-acquired methicillin-resistant S. aureus (MRSA) clones and the clonal complex 239 Aus-1/Aus-2 hospital-associated MRSA. There was a strong association between the community-acquired clones and pvl.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-I gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-IA. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The discovery of genetic factors that contribute to schizophrenia susceptibility is a key challenge in understanding the etiology of this disease. Here, we report the identification of a novel schizophrenia candidate gene on chromosome 1q32, plexin A2 (PLXNA2), in a genome-wide association study using 320 patients with schizophrenia of European descent and 325 matched controls. Over 25 000 single-nucleotide polymorphisms (SNPs) located within approximately 14 000 genes were tested. Out of 62 markers found to be associated with disease status, the most consistent finding was observed for a candidate locus on chromosome 1q32. The marker SNP rs752016 showed suggestive association with schizophrenia (odds ratio (OR) = 1.49, P = 0.006). This result was confirmed in an independent case control sample of European Americans (combined OR = 1.38, P = 0.035) and similar genetic effects were observed in smaller subsets of Latin Americans (OR = 1.26) and Asian Americans (OR = 1.37). Supporting evidence was also obtained from two family-based collections, one of which reached statistical significance (OR = 2.2, P = 0.02). High-density SNP mapping showed that the region of association spans approximately 60 kb of the PLXNA2 gene. Eight out of 14 SNPs genotyped showed statistically significant differences between cases and controls. These results are in accordance with previous genetic findings that identified chromosome 1q32 as a candidate region for schizophrenia. PLXNA2 is a member of the transmembrane semaphorin receptor family that is involved in axonal guidance during development and may modulate neuronal plasticity and regeneration. The PLXNA2 ligand semaphorin 3A has been shown to be upregulated in the cerebellum of individuals with schizophrenia. These observations, together with the genetic results, make PLXNA2 a likely candidate for the 1q32 schizophrenia susceptibility locus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Primary aldosteronism (PAL) is caused by the autonomous over-production of aldosterone. Once thought rare, it is now reported to be responsible for 5–10% of hypertension. Familial hyperaldosteronism type II (FH-II), unlike familial hyperaldosteronism type I, is not glucocorticoid-remediable and not associated with the hybrid CYP11B1/CYP11B2 gene mutation. At least five times more common than FH-I, FH-II is clinically, biochemically and morphologically indistinguishable from apparently sporadic PAL, suggesting that its incidence maybe even higher. Studies performed in collaboration with C Stratakis (NIH, Bethesda) on our largest Australian FH-II family (eight affected members) demonstrated linkage at chromosome 7p22. Similar linkage at this region was also found in a South American FH-II family (DNA provided by MI New, Presbyterian Hospital, New York). Mutations in the exons and intron/exon boundaries of the PRKARIB gene (which resides at 7p22 and is closely related to PRKARIA gene mutated in Carney complex) have been excluded in our largest Australian FH-II family. Using more finely spaced markers, we have confirmed linkage at 7p22 in these 2 families, and identified a second Australian family with evidence of linkage at this locus. The combined multipoint LOD score for these 3 families is 4.87 (θ=0) with markers D7S462 and D7S2424, which exceeds the critical threshold for genome-wide significance suggested by Lander and Kruglyak (1995), providing strong support for this locus harbouring mutations responsible for FH-II. A newly identified recombination event in our largest Australian family has narrowed the region of linkage by 1.8 Mb, permitting exclusion of approximately half the genes residing in the original reported 5Mb linked locus. In addition, we have strongly excluded linkage to these key markers in two Australian families (maximum multipoint LOD scores −3.51 and −2.77), supporting the notion that FH-II may be genetically heterogeneous. In order to identify candidate genes at 7p22, more closely spaced markers will be used to refine the locus, as well as single nucleotide polymorphism analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim: Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Method: Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). Results: In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. Interpretation: The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals. © 2013 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The improvement of tropical tree crops using conventional breeding methods faces challenges due to the length of time involved. Thus, like most crops, there is an effort to utilize molecular genetic markers in breeding programs to select for desirable agronomic traits. Known as marker assisted breeding or marker assisted selection, genetic markers associated with a phenotype of interest are used to screen and select material reducing the time necessary to evaluate candidates. As the focus of this research was improving disease resistance in tropical trees, the usefulness of the WRKY gene superfamily was investigated as candidates for generating useful molecular genetic markers. WRKY genes encode plant-specific transcriptional factors associated with regulating plants' responses to both biotic and abiotic stress. ^ One pair of degenerate primers amplified 48 WRKY gene fragments from three taxonomically distinct, economically important, tropical tree crop species: 18 from Theobroma cacao L., 21 from Cocos nucifera L. and 9 from Persea americana Mill. Several loci from each species were polymorphic because of single nucleotide substitutions present within a putative non-coding region of the loci. Capillary array electrophoresis-single strand conformational polymorphism (CAE-SSCP) mapped four WRKY loci onto a genetic linkage map of a T. cacao F2 population segregating for resistance to witches' broom disease. Additionally, PCR primers specific for four T. cacao loci successfully amplified WRKY loci from 15 members of the Byttneriae tribe. A method was devised to allow the reliable discrimination of alleles by CAE-SSCP using only the mobility assigned to the sample peaks. Once this method was validated, the diversity of three WRKY loci was evaluated in a germplasm collection of T. cacao . One locus displayed high diversity in the collection, with at least 18 alleles detected from mobility differences of the product peaks. The number of WRKY loci available within the genome, ease of isolation by degenerate PCR, codominant segregation demonstrated in the F2 population, and usefulness for screening germplasm collections and closely related wild species demonstrates that the WRKY superfamily of genes are excellent candidates for developing a number of genetic molecular markers for breeding purposes in tropical trees. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary objective of this proposal was to determine whether mitochondrial oxidative stress and variation in a particular mtDNA lineage contribute to the risk of developing cortical dysplasia and are potential contributing factors in epileptogenesis in children. The occurrence of epilepsy in children is highly associated with malformations of cortical development (MCD). It appears that MCD might arise from developmental errors due to environmental exposures in combination with inherited variation in response to environmental exposures and mitochondrial function. Therefore, it is postulated that variation in a particular mtDNA lineage of children contributes to the effects of mitochondrial DNA damage on MCD phenotype. Quantitative PCR and dot blot were used to examine mitochondrial oxidative damage and single nucleotide polymorphism (SNP) in the mitochondrial genome in brain tissue from 48 pediatric intractable epilepsy patients from Miami Children’s Hospital and 11 control samples from NICHD Brain and Tissue Bank for Developmental Disorders. Epilepsy patients showed higher mtDNA copy number compared to normal health subjects (controls). Oxidative mtDNA damage was lower in non-neoplastic but higher in neoplastic epilepsy patients compared to controls. There was a trend of lower mtDNA oxidative damage in the non-neoplastic (MCD) patients compared to controls, yet, the reverse was observed in neoplastic (MCD and Non-MCD) epilepsy patients. The presence of mtDNA SNP and haplogroups did not show any statistically significant relationships with epilepsy phenotypes. However, SNPs G9804A and G9952A were found in higher frequencies in epilepsy samples. Logistic regression analysis showed no relationship between mtDNA oxidative stress, mtDNA copy number, mitochondrial haplogroups and SNP variations with epilepsy in pediatric patients. The levels of mtDNA copy number and oxidative mtDNA damage and the SNPs G9952A and T10010C predicted neoplastic epilepsy, however, this was not significant due to a small sample size of pediatric subjects. Findings of this study indicate that an increase in mtDNA content may be compensatory mechanisms for defective mitochondria in intractable epilepsy and brain tumor. Further validation of these findings related to mitochondrial genotypes and mitochondrial dysfunction in pediatric epilepsy and MCD may lay the ground for the development of new therapies and prevention strategies during embryogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Base excision repair (BER) and nucleotide excision repair (NER) pathways play critical role in maintaining genome integrity. Polymorphisms in BER and NER genes which modulate the DNA repair capacity may affect the susceptibility and prognosis of oral cancer. This study was conducted with genomic DNA from 92 patients with oral squamous cell carcinomas (OSCC) and 130 controls. The cases were followed up to explore the associations between BER and NER genes polymorphisms and the risk and prognosis of OSCC. Four single-nucleotide polymorphisms (SNPs) in XRCC1 (rs25487), APEX1 (rs1130409), XPD (rs13181) and XPF (rs1799797) genes were tested by polymerase chain reaction – quantitative real time method. The GraphPad Prism version 6.0.1 statistical software was applied for statistical analysis of association. Odds ratio (OR), hazard ratio (HR), and their 95 % confidence intervals (CIs) were calculated by logistic regression. Kaplan-Meier curve and Cox proportional hazard model were used for prognostic analysis. The presence of polymorphic variants in XRCC1, APEX1, XPD and XPF genes were not associated with an increased risk of OSCC. Gene-environment interactions with smoking were not significant for any polymorphism. The presence of polymorphic variants of the XPD gene in association with alcohol consumption conferred an increased risk of 1.86 (95% CI: 0.86 – 4.01, p=0.03) for OSCC. Only APEX1 was associated with decreased specific survival (HR 3.94, 95% CI: 1.31 – 11.88, p=0.01). These results suggest an interaction between polymorphic variants of the XPF gene and alcohol consumption. Additionally APEX1 may represent a prognostic marker for OSCC.