973 resultados para Polymer composite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a minimum weight design of carbon/epoxy laminates is carried out using genetic algorithms. New failure envelopes have been developed by the combination of two commonly used phenomenological failure criteria, namely Maximum Stress (MS) and Tsai-Wu (TW) are used to obtain the minimum weight of the laminate. These failure envelopes are the most conservative failure envelope (MCFE) and the least conservative failure envelope (LCFE). Uniaxial and biaxial loading conditions are considered for the study and the differences in the optimal weight of the laminate are compared for the MCFE and LCFE. The MCFE can be used for design of critical load-carrying composites, while the LCFE could be used for the design of composite structures where weight reduction is much more important than safety such as unmanned air vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene-co-vinyl acetate) (EVA) films were irradiated with a 1.2MeV electron beam at varied doses over the range 0-270kGy in order to investigate the modifications induced in its optical, electrical and thermal properties. It was observed that optical band gap and activation energy of EVA films decreased upon electron irradiation, whereas the transition dipole moment, oscillator strength and number of carbon atoms per cluster were found to increase upon irradiation. Further, the dielectric constant, the dielectric loss, and the ac conductivity of EVA films were found to increase with an increase in the dose of electron radiation. The result further showed that the thermal stability of EVA film samples increased upon electron irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryogel matrices composed of different polymeric blends were synthesized, yielding a unique combination of hydrophilicity and hydrophobicity with the presence or absence of charged surface. Four such cryogel matrices composed of polyacrylamide-chitosan (PAAC), poly(N-isopropylacrylamide)-chitosan, polyacrylonitrile (PAN), and poly(N-isopropylacrylamide) were tested for growth of different hybridoma cell lines and production of antibody in static culture. All the matrices were capable for the adherence of hybridoma cell lines 6A4D7, B7B10, and H9E10 to the polymeric surfaces as well as for the efficient monoclonal antibody (mAb) production. PAAC proved to be relatively better in terms of both mAb production and cell growth. Further, PAAC cryogel was designed into three different formats, monolith, disks, and beads, and used as packing material for packed-bed bioreactor. Longterm cultivation of 6A4D7 cell line on PAAC cryogel scaffold in all the three formats could be successfully done for a period of 6 weeks under static conditions. Continuous packed-bed bioreactor was setup using 6A4D7 hybridoma cell line in the three reactor formats. The reactors ran continuously for a period of 60 days during which mAb production and metabolism of cells in the bioreactors were monitored periodically. The monolith bioreactor performed most efficiently over a period of 60 days and produced a total of 57.5 mg of antibody in the first 30 days (in 500 mL) with a highest concentration of 115 mu g mL(-1), which is fourfold higher than t-flask culture. The results demonstrate that appropriate chemistry and geometry of the bioreactor matrix for cell growth and immobilization can enhance the reactor productivity. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 170-180, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecule having a ketone group between two thiophene groups was synthesized. Presence of alternating electron donating and accepting moieties gives this material a donor-acceptor-donor (DAD) architecture. PolyDAD was synthesized from DAD monomer by oxidative polymerization. Device quality films of polyDAD were fabricated using pulsed laser deposition technique. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectra (FTIR) data of both as synthesized and film indicate the material does not degrade during ablation. Optical band gap was determined to be about 1.45 eV. Four orders of magnitude increase in conductivity was observed from as synthesized to pulsed laser deposition (PLD) fabricated film of polyDAD. Annealing of polyDAD films increase conductivity, indicating better ordering of the molecules upon heating. Rectifying devices were fabricated from polyDAD, and preliminary results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic-inorganic composite material is obtained by self-assembly of 2,3-didecyloxy-anthracene (DDOA), an organogelator of butanol, and organic-capped ZnO nanoparticles (NPs). The ligand 3, 2,3-di(6-oxy-n-hexanoic acid)-anthracene, designed to cap ZnO and interact with the DDOA nanofibers by structural similarity, improves the dispersion of the NPs into the organogel. The composite material displays mechanical properties similar to those of the pristine DDOA organogel, but gelates at a lower critical concentration and emits significantly less, even in the presence of very small amounts of ZnO NPs. The ligand 3 could also act as a relay to promote the photo-induced quenching process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cross-linked polymer-gel soft matter electrolyte with superior electrochemical, thermal and mechanical properties obtained from free radical polymerization of vinyl monomers in a semi-solid organic nonionic plastic crystalline electrolyte for application in rechargeable lithium-ion batteries is discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal-insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros-Shklovskii hopping mechanism. Magnetoconductance us. magnetic field plots obtained at various temperatures show a high magnetoconductance (similar to 28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report second harmonic generation in a new class of organic materials, namely donor-acceptor substituted all-trans butadienes doped in poly(methyl methacrylate) or polystyrene and oriented by corona poling at elevated temperatures. Second harmonic measurements were made at room temperature. The observed d33 coefficients are greater than those of potassium dihydrogen phosphate or 4-dimethylamino-4'-nitrostilbene doped in similar polymer matrices. Rotational diffusion coefficients estimated from the decay characteristics of the second harmonic intensity in the polymer films indicate that the polymer matrix plays a major role in stabilizing the dopants in a nonlinear optics conducive environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanide coordination polymers of the general formula Ln(2)(L)(5)(NO3)(H2O)(4)](n) (Ln = Eu (1), Tb (2), Gd (3)) supported by a novel aromatic carboxylate ligand 4-((1H-benzod]imidazol-1-yl)methyl)benzoic acid (HL) have been synthesized, characterized, and their photoluminescence behavior is examined. The powder X-ray diffraction patterns of complexes 1-3 showed that 1-3 are isostructural; thus, 1 has been chosen as an example to discuss in detail about the molecular structure by single-crystal X-ray diffraction. Complex 1 is a one-dimensional (1D) helical chain-like coordination polymer consisting of unique unsymmetrical dinuclear lanthanide building blocks. The 1D chains are further linked by the significant intermolecular hydrogen-bonding interactions to form a two-dimensional supramolecular network. The Tb3+ complex exhibits bright green luminescence efficiency in the solid state with a quantum yield of 15%. On the other hand, poor luminescence efficiency has been noted for Eu3+-benzoate complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design, fabrication and preliminary testing of a flat pump with millimetre thickness are described in this paper. The pump is entirely made of polymer materials barring the magnet and copper coils used for electromagnetic actuation. The fabrication is carried out using widely available microelectronic packaging machinery and techniques. Therefore, the fabrication of the pump is straightforward and inexpensive. Two types of prototypes are designed and built. One consists of copper coils that are etched on an epoxy plate and the other has wound insulated wire of 90 mu m diameter to serve as a coil. The overall size of the first pump is 25 mm x 25 mm x 3.6 mm including the 3.1 mm-thick NdFeB magnet of diameter 12 mm. It consists of a pump chamber of 20 mm x 20 mm x 0.8 mm with copper coils etched from a copper-clad epoxy plate using dry-film lithography and milled using a CNC milling machine, two passive valves and the pump-diaphragm made of Kapton film of 0.089 mm thickness. The second pump has an overall size of 35 mm x 35 mm x 4.4 mm including the magnet and the windings. A breadboard circuit and DC power supply are used to test the pump by applying an alternating square-wave voltage pulse. A water slug in a tube attached to the inlet is used to observe and measure the air-flow induced by the pump against atmospheric pressure. The maximum flow rate was found to be 15 ml/min for a voltage of 2.5 V and a current of 19 mA at 68 Hz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing map for hot working of Al alloy 2014-20vol.%Al2O3 particulate-reinforced cast-plus-extruded composite material has been generated covering the temperature range 300-500 degrees C and the strain rate range 0.001-10 s(-1) based on the dynamic materials model. The efficiency eta of power dissipation given by 2m/(m + 1), where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of superplasticity has been identified, with a peak efficiency of 62% occurring at 500 degrees C and 0.001 s(-1). The characteristics of this domain have been studied with the help of microstructural evaluation and hot-ductility measurements. Microstructural instability is predicted at higher strain rates above (ls(-1)) and lower temperatures (less than 350 degrees C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five compounds, viz. 1,1'-ferrocenediyldiethylidene bis(thiocarbonohydrazide) (DAFT), 1,1-diacetylferrocene disemicarbazone (DAFS), 1,1-diacetylferrocenebenzoyl hydrazone (FDBAH), 1,1-diacetylferrocene-p-nitrobenzoyl hydrazone (FDNBAH), and p-toluenesulfonic acid 1,1'-ferrocenediyldiethylidene dihydrazide (TFDD) were found to be bonding agents as well as burning-rate modifiers for the ammonium perchlorate + hydroxy-terminated polybutadiene system. The tensile strength and percentage elongation significantly increased in the presence of these bonding agents (except FDBAH). The bonding agents generally did not adversely affect the slurry viscosity during processing. The bonding sites were located by infrared spectroscopy, supported by determination of the dissolution kinetics of the bonding agents and scanning electron microscopy. The bonding agents did not undergo any side-reactions with the curing agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five compounds, viz. 1,1'-ferrocenediyldiethylidene bis(thiocarbonohydrazide) (DAFT), 1,1-diacetylferrocene disemicarbazone (DAFS), 1,1-diacetylferrocenebenzoyl hydrazone (FDBAH), 1,1-diacetylferrocene-p-nitrobenzoyl hydrazone (FDNBAH), and p-tolenesulfonic acid, 1,1'-ferrocenediyldiethylidene dihydrazide (TFDD) were found to be bonding agents as well as burning-rate modifiers for the ammonium perchlorate + hydroxy-terminated polybutadiene system. The tensile strength and percentage elongation significantly increased in the presence of these bonding agents (except FDBAH). The bonding agents generally did not adversely affect the slurry viscosity during processing. The bonding sites were located by infrared spectroscopy, supported by determination of the dissolution kinetics of the bonding agents and scanning electron microscopy. The bonding agents did not undergo any side-reactions with the curing agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article addresses uncertainty effect on the health monitoring of a smart structure using control gain shifts as damage indicators. A finite element model of the smart composite plate with surface-bonded piezoelectric sensors and actuators is formulated using first-order shear deformation theory and a matrix crack model is integrated into the finite element model. A constant gain velocity/position feedback control algorithm is used to provide active damping to the structure. Numerical results show that the response of the structure is changed due to matrix cracks and this change can be compensated by actively tuning the feedback controller. This change in control gain can be used as a damage indicator for structural health monitoring. Monte Carlo simulation is conducted to study the effect of material uncertainty on the damage indicator by considering composite material properties and piezoelectric coefficients as independent random variables. It is found that the change in position feedback control gain is a robust damage indicator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear static and dynamic response analyses of a clamped. rectangular composite plate resting on a two-parameter elastic foundation have been studied using von Karman's relations. Incorporating the material damping, the governing coupled, nonlinear partial differential equations are obtained for the plate under step pressure pulse load excitation. These equations have been solved by a one-term solution and by applying Galerkin's technique to the deflection equation. This yields an ordinary nonlinear differential equation in time. The nonlinear static solution is obtained by neglecting the time-dependent variables. Thc nonlinear dynamic damped response is obtained by applying the ultraspherical polynomial approximation (UPA) technique. The influences of foundation modulus, shear modulus, orthotropy, etc. upon the nonlinear static and dynamic responses have been presented.