895 resultados para Pneumococcal Vaccines
Resumo:
Background. Measles control may be more challenging in regions with a high prevalence of HIV infection. HIV-infected children are likely to derive particular benefit from measles vaccines because of an increased risk of severe illness. However, HIV infection can impair vaccine effectiveness and may increase the risk of serious adverse events after receipt of live vaccines. We conducted a systematic review to assess the safety and immunogenicity of measles vaccine in HIV-infected children. Methods. The authors searched 8 databases through 12 February 2009 and reference lists. Study selection and data extraction were conducted in duplicate. Meta-analysis was conducted when appropriate. Results. Thirty-nine studies published from 1987 through 2008 were included. In 19 studies with information about measles vaccine safety, more than half reported no serious adverse events. Among HIV-infected children, 59% (95% confidence intervals [CI], 46–71%) were seropositive after receiving standard-titer measles vaccine at 6 months (1 study), comparable to the proportion of seropositive HIV-infected children vaccinated at 9 (8 studies) and 12 months (10 studies). Among HIV-exposed but uninfected and HIV-unexposed children, the proportion of seropositive children increased with increasing age at vaccination. Fewer HIV-infected children were protected after vaccination at 12 months than HIV-exposed but uninfected children (relative risk, 0.61; 95% CI, .50–.73). Conclusions. Measles vaccines appear to be safe in HIV-infected children, but the evidence is limited. When the burden of measles is high, measles vaccination at 6 months of age is likely to benefit children of HIV-infected women, regardless of the child's HIV infection status.
Resumo:
In children treated with immunosuppressive medication such as methotrexate and tumor necrosis factor-alpha (TNF-α) inhibitors, additional immunizations are recommended because of increased susceptibility to infections. However, it is unclear if adequate antibody response to vaccinations can be established in children receiving methotrexate and/or TNF-α inhibitors. In a prospective open label study, we assessed seroprotection and seroconversion following influenza vaccination during 2 seasons (6 strains) in 36 children with autoimmune disease treated either with methotrexate (n=18), TNF-α inhibitors (n=10) or both (n=8) and a control group of 16 immunocompetent children. Influenza antibody titers were determined by hemagglutinin inhibition assay, before and 4-8 weeks after vaccination. Post-vaccination seroprotection (defined as a titer ≥1:40) did not significantly differ between immunosuppressed and immunocompetent subjects. Seroconversion, defined as the change from a nonprotective (< 1:40) to a protective titer (≥1:40) with at least a 4-fold titer increase, was less likely to occur in immunosuppressed patients, although no significant difference from the control group was established. Safety evaluation of vaccination showed no serious adverse events. Children receiving methotrexate and/or TNF-α inhibitors can be safely and effectively immunized against influenza, with a seroprotection after vaccination comparable to immunocompetent children.
Resumo:
Moraxella catarrhalis is an exclusively human commensal and mucosal pathogen. Its role as a disease-causing organism has long been questioned. Today, it is recognized as one of the major causes of acute otitis media in children, and its relative frequency of isolation from both the nasopharynx and the middle ear cavity has increased since the introduction of the heptavalent pneumococcal conjugate vaccine, which is associated with a shift in the composition of the nasopharyngeal flora in infants and young children. Although otitis media caused by M. catarrhalis is generally believed to be mild in comparison with pneumococcal disease, numerous putative virulence factors have now been identified and it has been shown that several surface components of M. catarrhalis induce mucosal inflammation. In adults with chronic obstructive pulmonary disease (COPD), M. catarrhalis is now a well-established trigger of approximately 10% of acute inflammatory exacerbations.Although the so-called cold shock response is a well-described bacterial stress response in species such as Escherichia coli, Bacillus subtilis or - more recently - Staphylococcus aureus, M. catarrhalis is the only typical nasopharyngeal pathogen in which this response has been investigated. Indeed, a 3-h 26°C cold shock, which may occur physiologically, when humans inspire cold air for prolonged periods of time, increases epithelial cell adherence and enhances proinflammatory host responses and may thus contribute to the symptoms referred to as common cold, which typically are attributed to viral infections.
Resumo:
Salmonella enterica serovar Typhimurium has long been recognised as a zoonotic pathogen of economic significance in animals and humans. Attempts to protect humans and livestock may be based on immunization with vaccines aimed to induce a protective response. We recently demonstrated that the oral administration of a Salmonella enterica serovar Typhimurium strain unable to synthesize the zinc transporter ZnuABC is able to protect mice against systemic salmonellosis induced by a virulent homologous challenge. This finding suggested that this mutant strain could represent an interesting candidate vaccine for mucosal delivery. In this study, the protective effect of this Salmonella strain was tested in a streptomycin-pretreated mouse model of salmonellosis that is distinguished by the capability of evoking typhlitis and colitis. The here reported results demonstrate that mice immunized with Salmonella enterica serovar Typhimurium (S. Typhimurium) SA186 survive to the intestinal challenge and, compared to control mice, show a reduced number of virulent bacteria in the gut, with milder signs of inflammation. This study demonstrates that the oral administration a of S. Typhimurium strain lacking ZnuABC is able to elicit an effective immune response which protects mice against intestinal S. Typhimurium infection. These results, collectively, suggest that the streptomycin-pretreated mouse model of S. typhimurium infection can represent a valuable tool to screen S. typhimurium attenuated mutant strains and potentially help to assess their protective efficacy as potential live vaccines.
Resumo:
Control of contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), remains an important goal in Africa. Subunit vaccines triggering B and T-cell responses could represent a promising approach. To this aim, the T-cell immunogenicity of four MmmSC lipoproteins (LppA, LppB, LppC and LppQ), present in African strains and able to elicit humoral response, was evaluated. In vitro assays revealed that only LppA was recognized by lymph node lymphocytes taken from three cattle, 3 weeks after MmmSC exposure. Maintenance of the LppA-specific response, relying on CD4 T-cells and IFN gamma production, was then demonstrated 1 year after infection. LppA is thus an important target for the CD4 T-cells generated early after MmmSC infection and persisting in the lymph nodes of recovered cattle. Its role as a protective antigen and ability to in vivo trigger both arms of the host immune response remain to be evaluated.
Resumo:
Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence.
Resumo:
Tick-borne encephalitis virus is the causative agent of tick-borne encephalitis, a potentially fatal neurological infection. Tick-borne encephalitis virus belongs to the family of flaviviruses and is transmitted by infected ticks. Despite the availability of vaccines, approximately 2000-3000 cases of tick-borne encephalitis occur annually in Europe for which no curative therapy is available. The antiviral effects of RNA mediated interference by small interfering RNA (siRNA) was evaluated in cell culture and organotypic hippocampal cultures. Langat virus, a flavivirus highly related to Tick-borne encephalitis virus exhibits low pathogenicity for humans but retains neurovirulence for rodents. Langat virus was used for the establishment of an in vitro model of tick-borne encephalitis. We analyzed the efficacy of 19 siRNA sequences targeting different regions of the Langat genome to inhibit virus replication in the two in vitro systems. The most efficient suppression of virus replication was achieved by siRNA sequences targeting structural genes and the 3' untranslated region. When siRNA was administered to HeLa cells before the infection with Langat virus, a 96.5% reduction of viral RNA and more than 98% reduction of infectious virus particles was observed on day 6 post infection, while treatment after infection decreased the viral replication by more than 98%. In organotypic hippocampal cultures the replication of Langat virus was reduced by 99.7% by siRNA sequence D3. Organotypic hippocampal cultures represent a suitable in vitro model to investigate neuronal infection mechanisms and treatment strategies in a preserved three-dimensional tissue architecture. Our results demonstrate that siRNA is an efficient approach to limit Langat virus replication in vitro.
Resumo:
A novel non-culture based 16S rRNA Terminal Restriction Fragment Length Polymorphism (T-RFLP) method using the restriction enzymes Tsp509I and Hpy166II was developed for the characterization of the nasopharyngeal microbiota and validated using recently published 454 pyrosequencing data. 16S rRNA gene T-RFLP for 153 clinical nasopharyngeal samples from infants with acute otitis media (AOM) revealed 5 Tsp509I and 6 Hpy166II terminal fragments (TFs) with a prevalence of >10%. Cloning and sequencing identified all TFs with a prevalence >6% allowing a sufficient description of bacterial community changes for the most important bacterial taxa. The conjugated 7-valent pneumococcal polysaccharide vaccine (PCV-7) and prior antibiotic exposure had significant effects on the bacterial composition in an additive main effects and multiplicative interaction model (AMMI) in concordance with the 16S rRNA 454 pyrosequencing data. In addition, the presented T-RFLP method is able to discriminate S. pneumoniae from other members of the Mitis group of streptococci, which therefore allows the identification of one of the most important human respiratory tract pathogens. This is usually not achieved by current high throughput sequencing protocols. In conclusion, the presented 16S rRNA gene T-RFLP method is a highly robust, easy to handle and a cheap alternative to the computationally demanding next-generation sequencing analysis. In case a lot of nasopharyngeal samples have to be characterized, it is suggested to first perform 16S rRNA T-RFLP and only use next generation sequencing if the T-RFLP nasopharyngeal patterns differ or show unknown TFs.
Resumo:
PURPOSE: The purpose was to study the emergency management of patients with suspected meningitis to identify potential areas for improvement. METHODS: All patients who underwent cerebrospinal fluid puncture at the emergency department of the University Hospital of Bern from January 31, 2004, to October 30, 2008, were included. A total of 396 patients were included in the study. For each patient, we analyzed the sequence and timing for the following management steps: first contact with medical staff, administration of the first antibiotic dose, lumbar puncture (LP), head imaging, and blood cultures. The results were analyzed in relation to clinical characteristics and the referral diagnosis on admission. RESULTS: Of the 396 patient analyzed, 15 (3.7%) had a discharge diagnosis of bacterial meningitis, 119 (30%) had nonbacterial meningitis, and 262 (66.3%) had no evidence of meningitis. Suspicion of meningitis led to earlier antibiotic therapy than suspicion of an acute cerebral event or nonacute cerebral event (P < .0001). In patients with bacterial meningitis, the average time to antibiotics was 136 minutes, with a range of 0 to 340 minutes. Most patients (60.1%) had brain imaging studies performed before LP. On the other hand, half of the patients with a referral diagnosis of meningitis (50%) received antibiotics before performance of an LP. CONCLUSIONS: Few patients with suspected meningitis received antimicrobial therapy within the first 30 minutes after arrival, but most patients with pneumococcal meningitis and typical symptoms were treated early; patients with bacterial meningitis who received treatment late had complex medical histories or atypical presentations.
Resumo:
Fosfomycin targets the first step of peptidoglycan biosynthesis in Streptococcus pneumoniae catalyzed by UDP-N-acetylglucosamine enolpyruvyltransferase (MurA1). We investigated whether heteroresistance to fosfomycin occurs in S. pneumoniae. We found that of 11 strains tested, all but 1 (Hungary(19A)) displayed heteroresistance and that deletion of murA1 abolished heteroresistance. Hungary(19A) differs from the other strains by a single amino acid substitution in MurA1 (Ala364Thr). To test whether this substitution is responsible for the lack of heteroresistance, it was introduced into strain D39. The heteroresistance phenotype of strain D39 was not changed. Furthermore, no relevant structural differences between the MurA1 crystal structures of heteroresistant strain D39 and nonheteroresistant strain Hungary(19A) were found. Our results reveal that heteroresistance to fosfomycin is the predominant phenotype of S. pneumoniae and that MurA1 is required for heteroresistance to fosfomycin but is not the only factor involved. The findings provide a caveat for any future use of fosfomycin in the treatment of pneumococcal infections.