993 resultados para Plant regulators
Resumo:
Two experiments were carried out to evaluate the initial plant growth of Eucalyptus urograndis growing in coexistence with Urochloa decumbens and U. ruziziensis. In 100-L box, one plant of U. decumbens or U. ruziziensis grew in coexistence with one plant of E. urograndis clones C219H or H15, respectively, in the distances of 0, 5, 10, 15, 20, 25, 30, 35, and 40 cm from the crop. After 30, 60, 90 (both clones), and 150 days (just for H15), growth characteristics were evaluated. Plants of both clones, growing in weed-free situations, showed a better growth and development than plants that grew in weedy situations, independently of the distance, having the highest plant height, stem diameter, dry mass of stem, and dry mass of leaves. As the same way, the number of branches, number of leaves, and leaf area of the clone C219H were similarly affected. Urochloa ruziziensis reduced the dry mass accumulation of stem and leaves by the rate of 0.06 and 0.32 g per plant, respectively, per each centimeter growing nearest to the crop, while U. decumbens reduced by 0.03 and 0.14 g per plant. The interference of U. decumbens and U. ruziziensis with E. urograndis is more intense when weedy plants grow in short distances from the crop.
Resumo:
Trinexapac-ethyl and sulfometuron-methyl are the most widely used ripeners in sugarcane. The application is performed by airborne spraying. Thus, if weather conditions are unfavorable, spray drift to neighboring areas may occur. The objective of this study was to assess the selectivity of the plant growth regulators trinexapac-ethyl and sulfometuron-methyl, used as sugarcane ripeners, to eucalyptus (Eucalyptus urograndis) young plants. The experiment was installed in an eucalyptus commercial yield area, in the municipality of Tambaú, state of São Paulo, Brazil, and arranged in a 2 x 8 factorial design in randomized blocks with four replications. The treatments studied were trinexapac-ethyl and sulfometuron-methyl, sprayed in eight doses, 0; 1.0; 2.5; 5.0; 10; 25; 50 and 100% of the dose used in sugarcane as ripeners (200 g ha-1 of trinexapac-ethyl and 15 g ha-1 of sulfometuron-methyl). Chemical ripeners were applied on eucalyptus plants with 48 cm in height on average; 10.1 branches; 4.5 mm of stem diameter and 44.3 cm of crown diameter, at 46 days after seeding. Trinexapac-ethyl was selective to eucalyptus and stimulated crown diameter growth. At higher doses, sulfometuron-methyl promoted severe noticeable injuries in eucalyptus plants, such as apical bud death. However, during the assessment period the plants recovered and the visual symptoms of phytotoxicity and growth alterations were not observed at 60 days after application. The plant growth regulators trinexapac-ethyl and sulfometuron-methyl were selective to eucalyptus young plants.
Resumo:
ABSTRACT Growth regulators can be used to further retard or inhibit vegetative growth. In this sense, the objective of this study was to determine the effects of age and number of trinexapac-ethyl applications on the growth and yield of sugarcane. The experiment was in a randomized complete block design with four replications. The treatments were in a 3 x 2 + 2 factorial arrangement, where factor A corresponded to the application times of the plant growth regulator (120, 200 and 240 days after bud burst (DAB) of sugarcane) and factor B to the number of applications (one or two applications). In addition, two controls (one with three applications and another application without the regulator) were added. The application of trinexapac-ethyl decreased the number and the distance between buds, height, root volume and sugarcane yield. The sequential application (2 or 3 times) induced an increase in stem diameter and three applications of the product increased the number of plant tillers. The use of growth regulators applied at 240 DAB has reduced plant height, however without changing the number of buds. It can be concluded that trinexapac-ethyl changes sugarcane growth and yield, regardless of season and number of applications.
Resumo:
ABSTRACT Calotropis procera, Apocynaceae, is a wild perennial shrub that originated in the Persian deserts. It is known to provide key resources in degraded ecosystems to about 80 animal species. C. procera is regenerated by seed and produces lots of small seeds that are dispersed by wind; nonetheless, its density is very low. The purpose of this study is to estimate the cardinal temperatures including the base, optimum, and maximum temperatures of Calotropis procera looking at two different ecotypes in the Iranian desert. The germination behavior of C. procera seeds was tested at temperature regimens of 0, 5, 10, 15, 20, 25, 30, 35 and 40oC and was analyzed using linear regression models. The rate of germination increased between base and optimum thermal conditions, and decreased between optimum and maximum thermal conditions. The base, optimum and maximum temperatures for germination of C. procera seeds were estimated at 19.10, 30.75 and 47.80 oC for the Fars and 20.00, 31.82 and 49.69oC for the Zahedan desert, respectively. Temperature and germination were rated to determine the seeding dates of the C. procera. Overall, cardinal temperatures for germination were dependent on local climate characteristics for the range of adaptations in plant growth of the given species.
Resumo:
Phytotoxic effects of invasive weed Parthenium hysterophorus were studied by using whole plant, leaf and root aqueous extracts at 0, 2.5, 5.0, 7.5 and 10% (w/v) concentrations against germination and early seedling growth of wheat and canola. Studies were carried out both in Petri plates with filter paper as substratum placed in controlled conditions and soil-filled plastic pots placed in open environments. Pronounced variation was noted for phytotoxic activity of different plant parts of parthenium, aqueous extract concentrations, test species, and bioassay techniques. Aqueous parthenium extracts either inhibited or delayed the germination and suppressed seedling growth of test species over control. For both test species, all the germination attributes were suppressed to a greater extent in Petri plates than in plastic pots. Leaf extracts were more suppressive to germination of test species than whole plant and root extracts. Increasing extract concentration beyond 2.5% caused significant reduction in seedling dry biomass of both test species. Aqueous parthenium extract diminished chlorophyll contents of wheat and canola by 32-63% and 29 69%, respectively. Nevertheless, an increase of 9-172% and 22-60% in phenolic contents of wheat and canola was recorded. Canola appeared to be more susceptible than wheat at all extract concentrations. Present study concluded that bioassays conducted under controlled condition using filter paper as substratum may be misleading due to over estimation of allelopathic response and variation in potential of receiver and donor species. Furthermore, it implies that threshold concentrations of allelochemicals for test species in Petri plates are rarely reached under field conditions.
Resumo:
An efficient micropropagation protocol was developed for the medicinal plant Phyllanthus stipulatus (Euphorbiaceae) using nodal segments for axillary shoot proliferation. Maximum multiplication rates (8-9 shoots per explant) was achieved on MS media supplemented with either 2.5-5.0 muM IBA. The best basal media for axillary shoot proliferation when 0.62 muM BA was supplemented were MS, MS/2 and AR (4-5 shoots per explant). Rooting was achieved with 100% of the microshoots on MS medium without growth regulators. Regenerated plants were successfully acclimatized and about 88% of plantlets survived under ex vitro conditions. Flowering was observed in 81% of the ex vitro grown plantlets after 12 weeks of acclimatization. High frequency callus initiation and growth was achieved when nodal segment explants were inoculated either in the vertical position, in the light on MS medium supplemented with 5.0 muM NAA or horizontally oriented, in the dark on MS supplemented with 5.0 muM NAA or 1.25-5.0 muM BA or 2iP. Root cultures were successfully established on MS medium containing 1.1 muM NAA. The optimized micropropagation, callus and root culture protocols offer the possibility to use cell/organ culture techniques for vegetative propagation and secondary metabolism studies.
Resumo:
Aspects of population dynamics and life history of Paepalanthus polyanthus (Bong.) Kunth, a sand dune monocarpic plant, were evaluated. A five year study was carried out on three permanent plots (5 m x 5 m) in a sand dune slack at Joaquina beach, Santa Catarina State, Brazil. From December 1986 to June 1989, the population decreased due to the death of the post reproductive plants and a low emergence of seedlings. In June 1989, a great recruitment occurred, but no plants survived. The population re-established itself by 1990-1991. The emergence and high survival of seedlings depended on periods of high pluviosity. Nevertheless, the summer flooding and episodes of drought represented key factors in mortality. The birth and mortality rates varied among the areas. It is suggested that these differences are related with depth of the ground water and with vegetation cover at each site. Paepalanthus polyanthus can reproduce in the second year of life, but few plants do this. The chances of survival and reproduction increase with the size of the basal leaf rosette. Although the production of seeds increases with size, the risk of unexpected flooding, for instance, suggest that a great delay in reproduction might not be the most favorable strategy.
Resumo:
One dune habitat in the semi-arid Caatinga Biome, rich in endemisms, is described based on plant species composition, woody plant density, mean height and phenology and a multivariate analysis of the micro-habitats generated by variables associated to plants and topography. The local flora is composed mainly by typically sand-dweller species of Caatinga, suggesting the existence of a phytogeographic unity related to the sandy areas in the Caatinga biome, which seems to be corroborated by faunal distribution. Moreover, some species are probably endemic from the dunes, a pattern also found in vertebrates. The plant distribution is patchy, there is no conspicuous herbaceous layer and almost 50% of the ground represents exposed sand. Phenology is not synchronized among species, occurring leaves budding and shedding, flowers development and anthesis, fruits production and dispersion both in rainy and dry seasons. Leaf shedding is low compared to the level usually observed in Caatinga areas and about 50% of the woody individuals were producing leaves in both seasons. Spectrum of dispersal syndromes shows an unexpected higher proportion of zoochorous species among the phanerophytes, accounting for 31.3% of the species, 78.7% of the total frequency and 78.6% of the total density. The habitat of the dunes is very simple and homogeneous in structure and most of environmental variance in the area is explained by one gradient of woody plants density and another of increase of Bromelia antiacantha Bertol. (Bromeliaceae) and Tacinga inamoena (K. Schum.) N.P. Taylor & Stuppy (Cactaceae) toward valleys, which seem to determine two kinds of protected micro-habitats for the small cursorial fauna.
Resumo:
Heat shock factors (HSFs) are an evolutionarily well conserved family of transcription factors that coordinate stress-induced gene expression and direct versatile physiological processes in eukaryote organisms. The essentiality of HSFs for cellular homeostasis has been well demonstrated, mainly through HSF1-induced transcription of heat shock protein (HSP) genes. HSFs are important regulators of many fundamental processes such as gametogenesis, metabolic control and aging, and are involved in pathological conditions including cancer progression and neurodegenerative diseases. In each of the HSF-mediated processes, however, the detailed mechanisms of HSF family members and their complete set of target genes have remained unknown. Recently, rapid advances in chromatin studies have enabled genome-wide characterization of protein binding sites in a high resolution and in an unbiased manner. In this PhD thesis, these novel methods that base on chromatin immunoprecipitation (ChIP) are utilized and the genome-wide target loci for HSF1 and HSF2 are identified in cellular stress responses and in developmental processes. The thesis and its original publications characterize the individual and shared target genes of HSF1 and HSF2, describe HSF1 as a potent transactivator, and discover HSF2 as an epigenetic regulator that coordinates gene expression throughout the cell cycle progression. In male gametogenesis, novel physiological functions for HSF1 and HSF2 are revealed and HSFs are demonstrated to control the expression of X- and Y-chromosomal multicopy genes in a silenced chromatin environment. In stressed human cells, HSF1 and HSF2 are shown to coordinate the expression of a wide variety of genes including genes for chaperone machinery, ubiquitin, regulators of cell cycle progression and signaling. These results highlight the importance of cell type and cell cycle phase in transcriptional responses, reveal the myriad of processes that are adjusted in a stressed cell and describe novel mechanisms that maintain transcriptional memory in mitotic cell division.
Resumo:
This work investigated how richness, abundance, composition and structure of woody and herbaceous vegetation were altered by the proximity of an edge between Araucaria forest and pasture in South Brazil. Herbaceous and woody species including seedlings were surveyed in 42 plots of 5 × 5 m randomly placed at the following distances: 5 and 50 m from the edge into the pasture and 0, 25, 50, 100 and 250 m from the edge into the forest. There was a significant increase in vegetation cover, richness and abundance of woody species, woody seedlings and herbaceous plants at the edge (0 m). These variables, in general, decreased from 25 to 50 m from the edge into the forest in comparison to the forest interior. Few seedlings of woody plants were able to establish themselves in the pasture. There were continuous changes in species composition that occurred in the studied gradient due to the invasion of light-demanding species and the disappearance of some shade-tolerant species at the edge. In conclusion, the forest edge studied generated changes in the plant community that extended up to 50 m into the forest.
Resumo:
Studies of plant community dynamics are essential in understanding the demographic patterns of species since changes in demographic rates can affect the floristic composition and future structure. The purpose of the present study was to analyze the changes in the community structure and floristic composition of woody plants in a tropical semi-deciduous forest in Uberlândia in central Brazil, during a 10-years period. The data were collected in 1989 and in 2000 in 50 quadrats (10 m x 10 m) where all trees with a minimum circumference at breast height of 10 cm were sampled. In 1989, 93 species and 1103 individuals were registered. Over a period of 10 years, seven new species were added to the community, although eight disappeared. The main change that occurred during this period in the floristic composition was the replacement of savannah species occurring in forest gaps by those from the forest understory.
Resumo:
Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.
Resumo:
The aim of this study was to research how plant closure announcements affect the market value of the largest pulp and paper industry companies in the world. Also the effect of announcements on competitors was researched and whether the location of plants, timing, reasons for the closures, and characteristics of the closing firms and competitors have an impact on the results. The overall sample included 57 events in the years 2004-2012 and event study was used as a research method. Main theories were signaling theory and spillover effect. According to empirical results, investors consider plant closure announcements as a positive signal for market value. The spillover effect on competitors was, on average, positive and characteristics of the firms and closures had an effect on the results. Furthermore, the market generally predicted the closures and overreacted to them on the announcement day and after it. It is possible for corporate management and investors to learn from the results and use them as support for their decision making.
Resumo:
We examined plant population structure and interspecific associations for juveniles and adults of four woody species (Andira legalis (Vell.) Toledo, Clusia hilariana Schltdl., Protium icicariba (DC.) Marchand and Vernonia crotonoides Sch. Bip. ex Baker) in a patchy vegetation on a sandy coastal plain (restinga) in SE - Brazil. We found 101 vegetation patches in a 0.5 ha grid and these were divided into two distinct size classes, with large patches (> 20 m²) containing the majority of adult individuals of the species studied. The most abundant species, P. icicariba (465 individuals) and C. hilariana (312), had actively regenerating populations, whereas A. legalis (20) and V. crotonoides (338) showed evidence of intermittent regeneration. The regeneration niches of the four species differed as did their investment in vegetative reproduction: for instance, 81% of C. hilariana seedlings were found growing inside tank-bromeliads contrasting with only 3% of P. icicariba in this habitat. Additionally, 28% of regenerants of C. hilariana originated vegetatively, contrasting with only 6% for P. icicariba. All significant associations between species found in the study were positive. There was a positive association between adults of C. hilariana and P. icicariba, as well as between adults of C. hilariana and juveniles of both. This suggests that P. icicariba is successfully establishing under the canopy of C. hilariana and highlights the role of C. hilariana in generating vegetation cover that will be later dominated by other woody plant species, as an important process for maintenance of plant diversity in this restinga vegetation.
Resumo:
(Note on the germination of Vochysia tucanorum seeds treated with growth regulators). The aim of this work was to evaluate the germination response of Vochysia tucanorum Mart. seeds treated with GA3 and CEPA and germinated under white light or darkness. Newly collected seeds from a Cerrado area were stored for 14 days at two temperatures (25 °C ± 2 and 7 °C ± 1). After the storage period the seeds were pre-treated with distilled water (control), gibberellic acid (GA3), 2-chloroethylphosphonic acid (CEPA) and a mixture of GA3 + CEPA. Following this, the seeds were sown in Petri dishes on filter paper moistened with distilled water and germinated in either darkness or white light. The results suggest that seeds are non-photoblastic and non-dormant, however a photoblastic behavior emerges when the seeds were previously stored at low temperature and imbibed in CEPA and GA3 solutions. In general, there is no difference between the 7 °C and 25 °C storage temperatures. The germination of seeds pre-treated with CEPA and CEPA + GA3 under white light was faster as compared to the distilled water control, and the effect of the CEPA + GA3 mixture was more pronounced than CEPA alone. Thus, the germination rate of V. tucanorum seeds can be improved by treatment with CEPA or CEPA + GA3 under white light.