946 resultados para Piecewise Interpolation
Resumo:
The following problem, suggested by Laguerre’s Theorem (1884), remains open: Characterize all real sequences {μk} k=0...∞ which have the zero-diminishing property; that is, if k=0...n, p(x) = ∑(ak x^k) is any P real polynomial, then k=0...n, p(x) = ∑(μk ak x^k) has no more real zeros than p(x). In this paper this problem is solved under the additional assumption of a weak growth condition on the sequence {μk} k=0...∞, namely lim n→∞ | μn |^(1/n) < ∞. More precisely, it is established that the real sequence {μk} k≥0 is a weakly increasing zerodiminishing sequence if and only if there exists σ ∈ {+1,−1} and an entire function n≥1, Φ(z)= be^(az) ∏(1+ x/αn), a, b ∈ R^1, b =0, αn > 0 ∀n ≥ 1, ∑(1/αn) < ∞, such that µk = (σ^k)/Φ(k), ∀k ≥ 0.
Resumo:
In the present paper the problems of the optimal control of systems when constraints are imposed on the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is given.
Resumo:
Prognostic procedures can be based on ranked linear models. Ranked regression type models are designed on the basis of feature vectors combined with set of relations defined on selected pairs of these vectors. Feature vectors are composed of numerical results of measurements on particular objects or events. Ranked relations defined on selected pairs of feature vectors represent additional knowledge and can reflect experts' opinion about considered objects. Ranked models have the form of linear transformations of feature vectors on a line which preserve a given set of relations in the best manner possible. Ranked models can be designed through the minimization of a special type of convex and piecewise linear (CPL) criterion functions. Some sets of ranked relations cannot be well represented by one ranked model. Decomposition of global model into a family of local ranked models could improve representation. A procedures of ranked models decomposition is described in this paper.
Resumo:
Stability of nonlinear impulsive differential equations with "supremum" is studied. A special type of stability, combining two different measures and a dot product on a cone, is defined. Perturbing cone-valued piecewise continuous Lyapunov functions have been applied. Method of Razumikhin as well as comparison method for scalar impulsive ordinary differential equations have been employed.
Resumo:
Cardiotocographic data provide physicians information about foetal development and, through assessment of specific parameters (like accelerations, uterine contractions, ...), permit to assess conditions such as foetal distress. An incorrect evaluation of foetal status can be of course very dangerous. In the last decades, to improve interpretation of cardiotocographic recordings, great interest has been dedicated to FHRV spectral analysis. It is worth reminding that FHR is intrinsically an uneven series and that to obtain evenly sampled series, many commercial cardiotocographs use a zero-order interpolation (storage rate of CTG data equal to 4 Hz). This is not suitable for frequency analyses because interpolation introduces alterations in the FHR power spectrum. In particular, this interpolation process can produce artifacts and an attenuation of the high-frequency components of the PSD that, for example, affects the estimation of the sympatho-vagal balance (SVB - computed as low-frequency/high-frequency ratio), which represents an important clinical parameter. In order to estimate the frequency spectrum alterations due to zero-order interpolation and other CTG storage rates, in this work, we simulated uneven FHR series with set characteristics, their evenly spaced versions (with different storage rates) and computed SVB values by PSD. For PSD estimation, we chose the Lomb method, as suggested by other authors in application to uneven HR series. ©2009 IEEE.
Resumo:
Congenital nystagmus (CN) is an ocular-motor disorder characterised by involuntary, conjugated ocular oscillations, that can arise since the first months of life. Pathogenesis of congenital nystagmus is still under investigation. In general, CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, image stabilisation is still achieved during the short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recording are routinely employed, allowing physicians to extract and analyse nystagmus main features such as shape, amplitude and frequency. Using eye movement recording, it is also possible to compute estimated visual acuity predictors: analytical functions which estimates expected visual acuity using signal features such as foveation time and foveation position variability. Use of those functions add information to typical visual acuity measurement (e.g. Landolt C test) and could be a support for therapy planning or monitoring. This study focus on robust detection of CN patients' foveations. Specifically, it proposes a method to recognize the exact signal tracts in which a subject foveates, This paper also analyses foveation sequences. About 50 eyemovement recordings, either infrared-oculographic or electrooculographic, from different CN subjects were acquired. Results suggest that an exponential interpolation for the slow phases of nystagmus could improve foveation time computing and reduce influence of breaking saccades and data noise. Moreover a concise description of foveation sequence variability can be achieved using non-fitting splines. © 2009 Springer Berlin Heidelberg.
Resumo:
This paper proposes a methodological scheme for the photovoltaic (PV) simulator design. With the advantages of a digital controller system, linear interpolation is proposed for precise fitting with higher computational efficiency. A novel control strategy that directly tackles two different duty cycles is proposed and implemented to achieve a full-range operation including short circuit (SC) and open circuit (OC) conditions. Systematic design procedures for both hardware and algorithm are explained, and a prototype is built. Experimental results confirm an accurate steady state performance under different load conditions, including SC and OC. This low power apparatus can be adopted for PV education and research with a limited budget.
Resumo:
2000 Mathematics Subject Classification: 26E25, 41A35, 41A36, 47H04, 54C65.
Resumo:
MSC 2010: 26A33, 34A08, 34K37
Resumo:
Reliability of power converters is of crucial importance in switched reluctance motor drives used for safety-critical applications. Open-circuit faults in power converters will cause the motor to run in unbalanced states, and if left untreated, they will lead to damage to the motor and power modules, and even cause a catastrophic failure of the whole drive system. This study is focused on using a single current sensor to detect open-circuit faults accurately. An asymmetrical half-bridge converter is considered in this study and the faults of single-phase open and two-phase open are analysed. Three different bus positions are defined. On the basis of a fast Fourier transform algorithm with Blackman window interpolation, the bus current spectrums before and after open-circuit faults are analysed in details. Their fault characteristics are extracted accurately by the normalisations of the phase fundamental frequency component and double phase fundamental frequency component, and the fault characteristics of the three bus detection schemes are also compared. The open-circuit faults can be located by finding the relationship between the bus current and rotor position. The effectiveness of the proposed diagnosis method is validated by the simulation results and experimental tests.
Resumo:
Limited literature regarding parameter estimation of dynamic systems has been identified as the central-most reason for not having parametric bounds in chaotic time series. However, literature suggests that a chaotic system displays a sensitive dependence on initial conditions, and our study reveals that the behavior of chaotic system: is also sensitive to changes in parameter values. Therefore, parameter estimation technique could make it possible to establish parametric bounds on a nonlinear dynamic system underlying a given time series, which in turn can improve predictability. By extracting the relationship between parametric bounds and predictability, we implemented chaos-based models for improving prediction in time series. ^ This study describes work done to establish bounds on a set of unknown parameters. Our research results reveal that by establishing parametric bounds, it is possible to improve the predictability of any time series, although the dynamics or the mathematical model of that series is not known apriori. In our attempt to improve the predictability of various time series, we have established the bounds for a set of unknown parameters. These are: (i) the embedding dimension to unfold a set of observation in the phase space, (ii) the time delay to use for a series, (iii) the number of neighborhood points to use for avoiding detection of false neighborhood and, (iv) the local polynomial to build numerical interpolation functions from one region to another. Using these bounds, we are able to get better predictability in chaotic time series than previously reported. In addition, the developments of this dissertation can establish a theoretical framework to investigate predictability in time series from the system-dynamics point of view. ^ In closing, our procedure significantly reduces the computer resource usage, as the search method is refined and efficient. Finally, the uniqueness of our method lies in its ability to extract chaotic dynamics inherent in non-linear time series by observing its values. ^
Resumo:
This dissertation establishes the foundation for a new 3-D visual interface integrating Magnetic Resonance Imaging (MRI) to Diffusion Tensor Imaging (DTI). The need for such an interface is critical for understanding brain dynamics, and for providing more accurate diagnosis of key brain dysfunctions in terms of neuronal connectivity. ^ This work involved two research fronts: (1) the development of new image processing and visualization techniques in order to accurately establish relational positioning of neuronal fiber tracts and key landmarks in 3-D brain atlases, and (2) the obligation to address the computational requirements such that the processing time is within the practical bounds of clinical settings. The system was evaluated using data from thirty patients and volunteers with the Brain Institute at Miami Children's Hospital. ^ Innovative visualization mechanisms allow for the first time white matter fiber tracts to be displayed alongside key anatomical structures within accurately registered 3-D semi-transparent images of the brain. ^ The segmentation algorithm is based on the calculation of mathematically-tuned thresholds and region-detection modules. The uniqueness of the algorithm is in its ability to perform fast and accurate segmentation of the ventricles. In contrast to the manual selection of the ventricles, which averaged over 12 minutes, the segmentation algorithm averaged less than 10 seconds in its execution. ^ The registration algorithm established searches and compares MR with DT images of the same subject, where derived correlation measures quantify the resulting accuracy. Overall, the images were 27% more correlated after registration, while an average of 1.5 seconds is all it took to execute the processes of registration, interpolation, and re-slicing of the images all at the same time and in all the given dimensions. ^ This interface was fully embedded into a fiber-tracking software system in order to establish an optimal research environment. This highly integrated 3-D visualization system reached a practical level that makes it ready for clinical deployment. ^
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^
Resumo:
A combination of statistical and interpolation methods and Geographic Information System (GIS) spatial analysis was used to evaluate the spatial and temporal changes in groundwater Cl− concentrations in Collier and Lee Counties (southwestern Florida), and Miami-Dade and Broward Counties (southeastern Florida), since 1985. In southwestern Florida, the average Cl− concentrations in the shallow wells (0–43 m) in Collier and Lee Counties increased from 132 mg L−1 in 1985 to 230 mg L−1 in 2000. The average Cl− concentrations in the deep wells (>43 m) of southwestern Florida increased from 392 mg L−1 in 1985 to 447 mg L−1 in 2000. Results also indicated a positive correlation between the mean sea level and Cl− concentrations and between the mean sea level and groundwater levels for the shallow wells. Concentrations in the Biscayne Aquifer (southeastern Florida) were significantly higher than those of southwestern Florida. The average Cl− concentrations increased from 159 mg L−1 in 1985 to 470 mg L−1 in 2010 for the shallow wells (<33 m) and from 1360 mg L−1 in 1985 to 2050 mg L−1 in 2010 for the deep wells (>33 m). In the Biscayne Aquifer, wells showed a positive or negative correlation between mean sea level and Cl− concentrations according to their location with respect to the saltwater intrusion line. Wells located inland behind canal control structures and west of the saltwater intrusion line showed negative correlation values, whereas wells located east of the saltwater intrusion line showed positive values. Overall, the results indicated that since 1985, there was a potential decline in the available freshwater resources estimated at about 12–17% of the available drinking-quality groundwater of the southeastern study area located in the Biscayne Aquifer.
Resumo:
The purpose of this research was to investigate the influence of elevation and other terrain characteristics over the spatial and temporal distribution of rainfall. A comparative analysis was conducted between several methods of spatial interpolations using mean monthly precipitation values in order to select the best. Following those previous results it was possible to fit an Artificial Neural Network model for interpolation of monthly precipitation values for a period of 20 years, with input values such as longitude, latitude, elevation, four geomorphologic characteristics and anchored by seven weather stations, it reached a high correlation coefficient (r=0.85). This research demonstrated a strong influence of elevation and other geomorphologic variables over the spatial distribution of precipitation and the agreement that there are nonlinear relationships. This model will be used to fill gaps in time-series of monthly precipitation, and to generate maps of spatial distribution of monthly precipitation at a resolution of 1km2.