916 resultados para Physiological maturity
Resumo:
We investigated whether amygdala activation, autonomic responses, respiratory responses, and facial muscle activity (measured over the brow and cheek [fear grin] regions) are all sensitive to phobic versus nonphobic fear and, more importantly, whether effects in these variables vary as a function of both phobic and nonphobic fear intensity. Spider-phobic and comparably low spider-fearful control participants imagined encountering different animals and rated their subjective fear while their central and peripheral nervous system activity was measured. All measures included in our study were sensitive to variations in subjective fear, but were related to different ranges and positions on the subjective fear level continuum. Left amygdala activation, heart rate, and facial muscle activity over the cheek region captured fear intensity variations even within narrowly described regions on the fear level continuum (here within extremely low levels of fear and within considerable phobic fear). Skin conductance and facial muscle activity over the brow region did not capture fear intensity variations within low levels of fear: skin conductance mirrored only extreme levels of fear, and activity over the brow region distinguished phobic from nonphobic fear but also low-to-moderate and high phobic fear. Finally, respiratory measures distinguished phobic from nonphobic fear with no further differentiation within phobic and nonphobic fear. We conclude that a careful consideration of the measures to be used in an investigation and the population to be examined can be critical in order to obtain significant results.
Resumo:
The validation of rodent models for restless legs syndrome (Willis-Ekbom disease) and periodic limb movements during sleep requires knowledge of physiological limb motor activity during sleep in rodents. This study aimed to determine the physiological time structure of tibialis anterior activity during sleep in mice and rats, and compare it with that of healthy humans. Wild-type mice (n = 9) and rats (n = 8) were instrumented with electrodes for recording the electroencephalogram and electromyogram of neck muscles and both tibialis anterior muscles. Healthy human subjects (31 ± 1 years, n = 21) underwent overnight polysomnography. An algorithm for automatic scoring of tibialis anterior electromyogram events of mice and rats during non-rapid eye movement sleep was developed and validated. Visual scoring assisted by this algorithm had inter-rater sensitivity of 92-95% and false-positive rates of 13-19% in mice and rats. The distribution of the time intervals between consecutive tibialis anterior electromyogram events during non-rapid eye movement sleep had a single peak extending up to 10 s in mice, rats and human subjects. The tibialis anterior electromyogram events separated by intervals <10 s mainly occurred in series of two-three events, their occurrence rate in humans being lower than in mice and similar to that in rats. In conclusion, this study proposes reliable rules for scoring tibialis anterior electromyogram events during non-rapid eye movement sleep in mice and rats, demonstrating that their physiological time structure is similar to that of healthy young human subjects. These results strengthen the basis for translational rodent models of periodic limb movements during sleep and restless legs syndrome/Willis-Ekbom disease.
Resumo:
Stereotypies are repetitive and relatively invariant patterns of behavior, which are observed in a wide range of species in captivity. Stereotypic behavior occurs when environmental demands produce a physiological response that, if sustained for an extended period, exceeds the natural physiological regulatory capacity of the organism, particularly in situations that include unpredictability and uncontrollability. One hypothesis is that stereotypic behavior functions to cope with stressful environments, but the existing evidence is contradictory. To address the coping hypothesis of stereotypies, we triggered physiological reactions in 22 horses affected by stereotypic behavior (crib-biters) and 21 non-crib-biters (controls), using an ACTH challenge test. Following administration of an ACTH injection, we measured saliva cortisol every 30min and heart rate (HR) continuously for a period of 3h. We did not find any differences in HR or HR variability between the two groups, but crib-biters (Group CB) had significantly higher cortisol responses than controls (Group C; mean±SD: CB, 5.84±2.62ng/ml, C, 4.76±3.04ng/ml). Moreover, crib-biters that did not perform the stereotypic behavior during the 3-hour test period (Group B) had significantly higher cortisol levels than controls, which was not the case of crib-biters showing stereotypic behavior (Group A) (B, 6.44±2.38ng/ml A, 5.58±2.69ng/ml). Our results suggest that crib-biting is a coping strategy that helps stereotypic individuals to reduce cortisol levels caused by stressful situations. We conclude that preventing stereotypic horses from crib-biting could be an inappropriate strategy to control this abnormal behavior, as it prevents individuals from coping with situations that they perceive as stressful.
Resumo:
The impact of heat stress on the functioning of the photosynthetic apparatus was examined in pea (Pisum sativum L.) plants grown at control (25 °C; 25 °C-plants) or moderately elevated temperature (35 °C; 35 °C-plants). In both types of plants net photosynthesis (Pn) decreased with increasing leaf temperature (LT) and was more than 80% reduced at 45 °C as compared to 25 °C. In the 25 °C-plants, LTs higher than 40 °C could result in a complete suppression of Pn. Short-term acclimation to heat stress did not alter the temperature response of Pn. Chlorophyll a fluorescence measurements revealed that photosynthetic electron transport (PET) started to decrease when LT increased above 35 °C and that growth at 35 °C improved the thermal stability of the thylakoid membranes. In the 25 °C-plants, but not in the 35 °C-plants, the maximum quantum yield of the photosystem II primary photochemistry, as judged by measuring the Fv/Fm ratio, decreased significantly at LTs higher than 38 °C. A post-illumination heat-induced reduction of the plastoquinone pool was observed in the 25 °C-plants, but not in the 35 °C-plants. Inhibition of Pn by heat stress correlated with a reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Western-blot analysis of Rubisco activase showed that heat stress resulted in a redistribution of activase polypeptides from the soluble to the insoluble fraction of extracts. Heat-dependent inhibition of Pn and PET could be reduced by increasing the intercellular CO2 concentration, but much more effectively so in the 35 °C-plants than in the 25 °C-plants. The 35 °C-plants recovered more efficiently from heat-dependent inhibition of Pn than the 25 °C-plants. The results show that growth at moderately high temperature hardly diminished inhibition of Pn by heat stress that originated from a reversible heat-dependent reduction of the Rubisco activation state. However, by improving the thermal stability of the thylakoid membranes it allowed the photosynthetic apparatus to preserve its functional potential at high LTs, thus minimizing the after-effects of heat stress.
Resumo:
OBJECTIVES A dissociation between behavioural (in-control) and physiological parameters (indicating loss-of-control) is associated with cardiovascular risk in defensive coping (DefS) Africans. We evaluated relationships between DefS, sub-clinical atherosclerosis, low-grade inflammation and hypercoagulation in a bi-ethnic sex cohort. METHODS Black (Africans) and white Africans (Caucasians) (n = 375; aged 44.6 ± 9.7 years) were included. Ambulatory BP, vascular structure (left carotid cross-sectional wall area (L-CSWA) and plaque counts), and markers of coagulation and inflammation were quantified. Ethnicity/coping style interaction was revealed only in DefS participants. RESULTS A hypertensive state, less plaque, low-grade inflammation, and hypercoagulation were more prevalent in DefS Africans (27-84%) than DefS Caucasians (18-41%). Regression analyses demonstrated associations between L-CSWA and 24 hour systolic BP (R(2) = 0.38; β = 0.78; p < 0.05) in DefS African men but not in DefS African women or Caucasians. No associations between L-CSWA and coagulation markers were evident. CONCLUSION Novel findings revealed hypercoagulation, low-grade inflammation and hyperkinetic BP (physiological loss-of-control responses) in DefS African men. Coupled to a self-reported in-control DefS behavioural profile, this reflects dissociation between behaviour and physiology. It may explain changes in vascular structure, increasing cerebrovascular disease risk in a state of hyper-vigilant coping.
Resumo:
Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns.
Resumo:
PURPOSE OF REVIEW Neutrophil extravasation from the blood into tissues is initiated by tethering and rolling of neutrophils on endothelial cells, followed by neutrophil integrin activation and shear resistant arrest, crawling, diapedesis and breaching the endothelial basement membrane harbouring pericytes. Endothelial intercellular cell adhesion molecule (ICAM)-1 and ICAM-2, in conjunction with ICAM-1 on pericytes, critically contribute to each step. In addition, epithelial ICAM-1 is involved in neutrophil migration to peri-epithelial sites. The most recent findings on the role of ICAM-1 and ICAM-2 for neutrophil migration into tissues will be reviewed here. RECENT FINDINGS Signalling via endothelial ICAM-1 and ICAM-2 contributes to stiffness of the endothelial cells at sites of chronic inflammation and junctional maturation, respectively. Endothelial ICAM-2 contributes to neutrophil crawling and initiation of paracellular diapedesis, which then proceeds independent of ICAM-2. Substantial transcellular neutrophil diapedesis across the blood-brain barrier is strictly dependent on endothelial ICAM-1 and ICAM-2. Endothelial ICAM-1 or ICAM-2 is involved in neutrophil-mediated plasma leakage. ICAM-1 on pericytes assists the final step of neutrophil extravasation. Epithelial ICAM-1 rather indirectly promotes neutrophil migration to peri-epithelial sites. SUMMARY ICAM-1 and ICAM-2 are involved in each step of neutrophil extravasation, and have redundant but also distinct functions. Analysis of the role of endothelial ICAM-1 requires simultaneous consideration of ICAM-2.
Resumo:
The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology.
Resumo:
Alien plants provide a unique opportunity to study evolution in novel environments, but relatively little is known about the extent to which they become locally adapted to different environments across their new range. Here, we compare northern and southern populations of the introduced species Senecio squalidus in Britain; S. squalidus has been in southern Britain for approximately 200 years and reached Scotland only about 50 years ago. We conducted common garden experiments at sites in the north and south of the species’ range in Britain. We also conducted glasshouse and growth chamber experiments to test the hypothesis that southern genotypes flower later, are more drought-tolerant, germinate and establish better at warmer temperatures, and are less sensitive to cold stress than their more northern counterparts. Results from the common garden experiments are largely consistent with the hypothesis of rapid adaptive divergence of populations of the species within the introduced range, with genotypes typically showing a home-site advantage. Results from the glasshouse and growth chamber experiments demonstrate adaptive divergence in ability to tolerate drought stress and high temperatures, as well as in phenology. In particular, southern genotypes were more tolerant of dry conditions and high temperatures and they flowered later than northern genotypes. Our results show that rapid local adaptation can occur in alien species, and they have implications for our understanding of the ecological genetics of range expansion of introduced weeds.
Resumo:
In equatorial regions, where tree rings are less distinct or even absent, the response of forests to high-frequency climate variability is poorly understood. We measured stable carbon and oxygen isotopes in anatomically distinct, annual growth rings of four Pericopsis elata trees from a plantation in the Congo Basin, to assess their sensitivity to recorded changes in precipitation over the last 50 y. Our results suggest that oxygen isotopes have high common signal strength (EPS = 0.74), and respond to multi-annual precipitation variability at the regional scale, with low δ18O values (28–29‰) during wetter conditions (1960–1970). Conversely, δ13C are mostly related to growth variation, which in a light-demanding species are driven by competition for light. Differences in δ13C values between fast- and slow-growing trees (c. 2‰), result in low common signal strength (EPS = 0.37) and are driven by micro-site conditions rather than by climate. This study highlights the potential for understanding the causes of growth variation in P. elata as well as past hydroclimatic changes, in a climatically complex region characterized by a bimodal distribution in precipitation.
Resumo:
Glycogen is a major substrate in energy metabolism and particularly important to prevent hypoglycemia in pathologies of glucose homeostasis such as type 1 diabetes mellitus (T1DM). (13) C-MRS is increasingly used to determine glycogen in skeletal muscle and liver non-invasively; however, the low signal-to-noise ratio leads to long acquisition times, particularly when glycogen levels are determined before and after interventions. In order to ease the requirements for the subjects and to avoid systematic effects of the lengthy examination, we evaluated if a standardized preparation period would allow us to shift the baseline (pre-intervention) experiments to a preceding day. Based on natural abundance (13) C-MRS on a clinical 3 T MR system the present study investigated the test-retest reliability of glycogen measurements in patients with T1DM and matched controls (n = 10 each group) in quadriceps muscle and liver. Prior to the MR examination, participants followed a standardized diet and avoided strenuous exercise for two days. The average coefficient of variation (CV) of myocellular glycogen levels was 9.7% in patients with T1DM compared with 6.6% in controls after a 2 week period, while hepatic glycogen variability was 13.3% in patients with T1DM and 14.6% in controls. For comparison, a single-session test-retest variability in four healthy volunteers resulted in 9.5% for skeletal muscle and 14.3% for liver. Glycogen levels in muscle and liver were not statistically different between test and retest, except for hepatic glycogen, which decreased in T1DM patients in the retest examination, but without an increase of the group distribution. Since the CVs of glycogen levels determined in a "single session" versus "within weeks" are comparable, we conclude that the major source of uncertainty is the methodological error and that physiological variations can be minimized by a pre-study standardization. For hepatic glycogen examinations, familiarization sessions (MR and potentially strenuous interventions) are recommended. Copyright © 2016 John Wiley & Sons, Ltd.
Resumo:
Morphological variation within and among many species of algae show correlated life history traits. The trade-offs of Life history traits among different morphs are presumed to be determined by morphology. Form-function hypotheses also predict that algae of different morphological groups exhibit different tolerances to physiological stress, whereas algae within a morphological group respond similarly to stress. We tested this hypothesis by comparing photosynthetic and respiratory responses to variation in season, light, temperature, desiccation and freezing among the morphologically similar fronds of Chondrus crispus and Mastocarpus stellatus and the alternate stage crust of M. stellatus. Physiological differences between fronds of the 2 species and crusts and fronds were consistent with their patterns of distribution and abundance in the intertidal zone. However, there was no clear relationship between algal morphology and physiological response to environmental variation. These results suggest that among macroalgae the correlation between Life history traits and morphology is not always causal. Rather, the link between life history traits and morphology is constrained by the extent to which physiological characteristics codetermine these features.
Resumo:
Despite the extensive work on currency mismatches, research on the determinants and effects of maturity mismatches is scarce. In this paper I show that emerging market maturity mismatches are negatively affected by capital inflows and price volatilities. Furthermore, I find that banks with low maturity mismatches are more profitable during crisis periods but less profitable otherwise. The later result implies that banks face a tradeoff between higher returns and risk, hence channeling short term capital into long term loans is caused by cronyism and implicit guarantees rather than the depth of the financial market. The positive relationship between maturity mismatches and price volatility, on the other hand, shows that the banks of countries with high exchange rate and interest rate volatilities can not, or choose not to hedge themselves. These results follow from a panel regression on a data set I constructed by merging bank level data with aggregate data. This is advantageous over traditional studies which focus only on aggregate data.
Resumo:
This paper reinforces the argument of Harding and Sirmans (2002) that the observed preference of lenders for extended maturity rather than renegotiation of the principle in the case of loan default is due to the superior incentive properties of the former. Specifically, borrowers have a greater incentive to avoid default under extended maturity because it reduces the likelihood that they will be able to escape paying off the full loan balance. Thus, although extended maturity leaves open the possibility of foreclosure, it will be preferred to renegotiation as long as the dead weight loss from foreclosure is not too large.