971 resultados para Physical growth
Resumo:
It has been hypothesized that the brain categorizes stressors and utilizes neural response pathways that vary in accordance with the assigned category. If this is true, stressors should elicit patterns of neuronal activation within the brain that are category-specific. Data from previous Immediate-early gene expression mapping studies have hinted that this is the case, but interstudy differences in methodology render conclusions tenuous. In the present study, immunolabelling for the expression of c-fos was used as a marker of neuronal activity elicited in the rat brain by haemorrhage, immune challenge, noise, restraint and forced swim. All stressors elicited c-fos expression in 25-30% of hypothalamic paraventricular nucleus corticotrophin-releasing-factor cells, suggesting that these stimuli were of comparable strength, at least with regard to their ability to activate the hypothalamic-pituitary-ad renal axis. In the amygdala, haemorrhage and immune challenge both elicited c-fos expression in a large number of neurons in the central nucleus of the amygdala, whereas noise, restraint and forced swim primarily elicited recruitment of cells within the medial nucleus of the amygdala. In the medulla, all stressors recruited similar numbers of noradrenergic (A1 and A2) and adrenergic (C1 and C2) cells. However, haemorrhage and immune challenge elicited c-fos expression In subpopulations of A1 and A2 noradrenergic cells that were significantly more rostral than those recruited by noise, restraint or forced swim. The present data support the suggestion that the brain recognizes at least two major categories of stressor, which we have referred to as 'physical' and 'psychological'. Moreover, the present data suggest that the neural activation footprint that is left in the brain by stressors can be used to determine the category to which they have been assigned by the brain.
Resumo:
In the last two decades, increasing numbers of workplaces in Australia have introduced 12-hour shifts. This increase is due, in part, to government policies aimed at promoting labour flexibility. The purpose of this paper is to examine the cover afforded by the Workplace Relations Act 1996 and other industrial relations legislation in terms of shift-workers’ health and safety. Particular reference is made to the broader social, economic and political context surrounding the introduction and use of 12-hour shifts, as it is this context that shapes the constraints and opportunities facing employers and employees in the work arrangements they choose and how they are negotiated. We conclude that the current system of regulating industrial relations in Australia is largely outcome-focused and inadequate. The bargaining process receives little regulation in terms of considering how changes could affect health and safety in the workplace or how changes might affect individual workers. As a result, the increased introduction of unsafe shiftworking arrangements is a worrying, and likely, prospect.
Resumo:
The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.
Resumo:
The goal of the current study was to identify discrete longitudinal patterns of change in adolescent smoking using latent growth mixture modeling. Five distinct longitudinal patterns were identified. A group of early rapid escalators was characterized by early escalation (at age 13) that rapidly increased to heavy smoking. A pattern characterized by occasional puffing up until age 15, at which time smoking escalated to moderate levels was also identified (late moderate escalators). Another group included adolescents who, after age 15, began to escalate slowly in their smoking to light (0.5 cigarettes per month) levels (late slow escalators). Finally, a group of stable light smokers (those who smoked 1-2 cigarettes per month) and a group of stable puffers (those. who smoked only a few puffs per month) were also identified. The stable puffer group was the largest group and represented 25% of smokers.
Resumo:
GH is being used by elite athletes to enhance sporting performance. To examine the hypothesis that exogenous 22-kDa recombinant human GH (rhGH) administration could be detected through suppression of non-22-kDa isoforms of GH, we studied seventeen aerobically trained males (age, 26.9 +/- 1.5 yr) randomized to rhGH or placebo treatment (0.15 IU/kg/day for 1 week). Subjects were studied at rest and in response to exercise (cycle-ergometry at 65% of maximal work capacity for 20 min). Serum was assayed for total GH (Pharmacia IRMA and pituitary GH), 22-kDa GH (2 different 2-site monoclonal immunoassays), non-22-kDa GH (22-kDa GH-exclusion assay), 20-kDa GH, and immunofunctional GH. In the study, 3 h after the last dose of rhGH, total and 22-kDa GH concentrations were elevated, reflecting exogenous 22-kDa GH. Non-22-kDa and 20-kDa GH levels were suppressed. Regression of non-22-kDa or 20-kDa GH against total or 22-kDa GH produced clear separation of treatment groups. In identical exercise studies repeated between 24 and 96 h after cessation of treatment, the magnitude of the responses of all GH isoforms was suppressed (P < 0.01), but the relative proportions were similar to those before treatment. We conclude: 1) supraphysiological doses of rhGH in trained adult males suppressed exercise-stimulated endogenous circulating isoforms of GH for up to 4 days; 2) the dearest separation of treatment groups required the simultaneous presence of high exogenous 22-kDa GH and suppressed 20-kDa or non-22-kDa GH concentrations; and 3) these methods may prove useful in detecting rhGH abuse in athletes.
Resumo:
Circulating GH consists of multiple molecular isoforms, all derived from the one gene in nonpregnant humans. To assess the effect of a potent stimulus to pituitary secretion on GH isoforms, we studied 17 aerobically trained males (age, 26.9 +/- 1.5 yr) in a randomized, repeat measures study of rest vs. exercise. Exercise consisted of continuous cycle ergometry at approximately 80% of predetermined maximal oxygen uptake for 20 min. Serum was assayed for total, pituitary, 22-kDa, recombinant, non-22-kDa, 20-kDa, and immunofunctional GH. All isoforms increased during, peaked at the end, and declined after exercise. At peak exercise, 22-kDa GH was the predominant isoform. After exercise, the ratios of non-22 kDa/total GH and 20-kDa GH/total GH increased and those of recombinant/pituitary GH decreased. The disappearance half-times for pituitary GH and 20-kDa GH were significantly longer than those for all other isoforms. We conclude that 1) all molecular isoforms of GH measured increased with and peaked at the end of acute exercise, with 22-kBa GH constituting the major isoform in serum during exercise; and 2) the proportion of non-22-kDa isoforms increased after exercise due in part to slower disappearance rates of 20-kDa and perhaps other non-22-kDa GH isoforms. It remains to be determined whether the various biological actions of different GH isoforms impact on postexercise homeostasis.
Resumo:
Objective To explore whether abnormalities in growth hormone binding protein (GHBP) may underlie the growth restriction associated with fetal aneuploidy. Design A retrospective casecontrol study. Setting Monash Medical Centre, Clayton, Victoria, Australia. Population Twenty-one trisomy 18, and 30 trisomy 21 pregnancies, and 170 chromosomally normal pregnancies at 15-18 weeks of gestation representing three to five controls per case matched for source, gestation and duration of storage. Methods GHBP was measured using a ligand immunofunctional assay. Results In the chromosomally normal pregnancies GHBP levels decreased slightly but significantly across the narrow gestational window studied. Compared with controls, levels of GHBP, expressed as median (95% CI) multiples of the median (MoM), in the trisomy 21 pregnancies were similar, 1.0 (0.92-1.39) MoM and 1.27 (1.04-1.50) MoM, respectively; P = 0.061 (Mann-Whitney CI test) but were significantly reduced in the trisomy 18 pregnancies, 0.68 (0.51-0.84) MoM; P = 0.0014 (Mann-Whitney U test). Conclusions These data suggest that decreased levels of maternal growth hormone binding protein, and by implication growth hormone receptor complement, may underlie the early severe growth restriction that is characteristic of trisomy 18.
Resumo:
Transforming growth factor beta1 treatment of keratinocytes results in a suppression of differentiation, an induction of extracellular matrix production, and a suppression of growth. In this study we utilized markers specific for each of these functions to explore the signaling pathways involved in mediating these transforming-growth-factor-beta1-induced activities. In the first instance, we found that the induction of extracellular matrix production (characterized by 3TP-Lux reporter activity) was induced in both keratinocytes and a keratinocyte-derived carcinoma cell line, SCC25, in a dose-dependent manner. Furthermore, transforming growth factor beta1 also suppressed the differentiation-specific marker gene, transglutaminase type 1, in both keratinocytes and SCC25 cells. In contrast, transforming growth factor beta1 inhibited proliferation of keratinocytes but did not cause growth inhibition in the SCC25 cells. Transforming-growth-factor-beta1-induced growth inhibition of keratinocytes was characterized by decreases in DNA synthesis, accumulation of hypophosphorylated Rb, and the inhibition of the E2F:Rb-responsive promoter, cdc2, and an induction of the p21 promoter. When the negative regulator of transforming growth factor beta1 signaling, SMAD7, was overexpressed in keratinocytes it could prevent transforming-growth-factor-beta1-induced activation of the 3TP-Lux and the p21 promoter. SMAD7 could also prevent the suppression of the transglutaminase type 1 by transforming growth factor beta1 but it could not inhibit the repression of the cdc2 promoter. These data indicate that the induction of 3TP-Lux and p21 and the suppression of transglutaminase type 1 are mediated by a different proximate signaling pathway to that regulating the suppression of the cdc2 gene. Combined, these data indicate that the regulation of transforming growth factor beta1 actions are complex and involve multiple signaling pathways.
Resumo:
Use of specific histone deacetylase inhibitors has revealed critical roles for the histone deacetylases (HDAC) in controlling proliferation. Although many studies have correlated the function of HDAC inhibitors with the hyperacetylation of histones, few studies have specifically addressed whether the accumulation of acetylated histones, caused by HDAC inhibitor treatment, is responsible for growth inhibition. In the present study we show that HDAC inhibitors cause growth inhibition in normal and transformed keratinocytes but not in normal dermal fibroblasts, This was despite the observation that the HDAC inhibitor, suberic bishydroxamate (SBHA), caused a kinetically similar accumulation of hyperacetylated histones, This cell type-specific response to SBHA was not due to the inactivation of SBHA by fibroblasts, nor was it due to differences in the expression of specific HDAC family members. Remarkably, overexpression of HDACs 1, 4, and 6 in normal human fibroblasts resulted in cells that could be growth-inhibited by SBHA. These data suggest that, although histone acetylation is a major target for HDAC inhibitors, the accumulation of hyperacetylated histones is not sufficient to cause growth inhibition in all cell types, This suggests that growth inhibition, caused by HDAC inhibitors, may be the culmination of histone hyperacetylation acting in concert with other growth regulatory pathways.
Resumo:
Background: In large cohort studies of older children, self-report is the only practical way to assess physical activity. Assessing usual activity over the entire year is desirable, but children and adolescents may overestimate activities with high seasonal variability. Use of questionnaires in which individuals report each activity by season may improve accuracy. Methods: A total of 6782 girls and 5110 boys, aged 9–14 years in 1996, completed self-administered activity questionnaires in 1996 and in 1997. In 1996, participants reported the average time spent in each of 17 activities during the previous 12 months; in 1997, we also asked for the average time spent in the previous year, but within each of the four seasons. Results: Girls reported a median of 12.8 hours/week total activity in 1996 and 10.4 hours/week in 1997. For boys, the estimates were 15.5 hours/week and 13.4 hours/week, respectively. Girls and boys within 1-year age strata (e.g., comparison of 10-year olds in 1996 with 10-year olds in 1997) reported an average of 3.7 and 3.1 fewer hours per week, respectively, on the 1997 seasonal format versus the 1996 annual format questionnaire. In longitudinal analyses, the difference between the annual and the seasonal estimates was greater if participants did the activity in fewer seasons in 1997. Conclusions: In comparison to an annual format questionnaire, a seasonal format questionnaire may improve accuracy of self-report of physical activity by reducing over-reporting of activities in which pre-adolescents and adolescents engage in fewer seasons.