929 resultados para Photochemical reactions
Resumo:
The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Metho ds Res. A505, 377 (2003)) and later the University of Sao Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems the solenoids act as thick lenses to collect, select, and focus the secondary beam into a scattering chamb er. Many experiments with radioactive light particle beams (RNB) such as (6)He, (7)Be, (8)Li, (8)B have been performed at these two facilities. These low-energy RNB have been used to investigate low-energy reactions such as elastic scattering, transfer and breakup, providing useful information on the structure of light nuclei near the drip line and on astrophysics. Total reaction cross-sections, derived from elastic scattering analysis, have also been investigated for light system as a function of energy and the role of breakup of weakly bound or exotic nuclei is discussed.
Resumo:
Nuclear (p,alpha) reactions destroying the so-called ""light-elements"" lithium, beryllium and boron have been largely studied in the past mainly because their role in understanding some astrophysical phenomena, i.e. mixing-phenomena occurring in young F-G stars [1]. Such mechanisms transport the surface material down to the region close to the nuclear destruction zone, where typical temperatures of the order of similar to 10(6) K are reached. The corresponding Gamow energy E(0)=1.22 (Z(x)(2)Z(X)(2)T(6)(2))(1/3) [2] is about similar to 10 keV if one considers the ""boron-case"" and replaces in the previous formula Z(x) = 1, Z(X) = 5 and T(6) = 5. Direct measurements of the two (11)B(p,alpha(0))(8)Be and (10)B(p,alpha)(7)Be reactions in correspondence of this energy region are difficult to perform mainly because the combined effects of Coulomb barrier penetrability and electron screening [3]. The indirect method of the Trojan Horse (THM) [4-6] allows one to extract the two-body reaction cross section of interest for astrophysics without the extrapolation-procedures. Due to the THM formalism, the extracted indirect data have to be normalized to the available direct ones at higher energies thus implying that the method is a complementary tool in solving some still open questions for both nuclear and astrophysical issues [7-12].
Resumo:
The traditional reduction methods to represent the fusion cross sections of different systems are flawed when attempting to completely eliminate the geometrical aspects, such as the heights and radii of the barriers, and the static effects associated with the excess neutrons or protons in weakly bound nuclei. We remedy this by introducing a new dimensionless universal function, which allows the separation and disentanglement of the static and dynamic aspects of the breakup coupling effects connected with the excess nucleons. Applying this new reduction procedure to fusion data of several weakly bound systems, we find a systematic suppression of complete fusion above the Coulomb barrier and enhancement below it. Different behaviors are found for the total fusion cross sections. They are appreciably suppressed in collisions of neutron-halo nuclei, while they are practically not affected by the breakup coupling in cases of stable weakly bound nuclei. (C) 2009 Elsevier B.V. All rights reserved.
An imaginary potential with universal normalization for dissipative processes in heavy-ion reactions
Resumo:
In this work we present new coupled channel calculations with the Sao Paulo potential (SPP) as the bare interaction, and an imaginary potential with system and energy independent normalization that has been developed to take into account dissipative processes in heavy-ion reactions. This imaginary potential is based on high-energy nucleon interaction in nuclear medium. Our theoretical predictions for energies up to approximate to 100 MeV/nucleon agree very well with the experimental data for the p, n + nucleus, (16)O + (27)Al, (16)O + (60)Ni, (58)Ni + (124)Sn, and weakly bound projectile (7)Li + (120)Sn systems. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new technique to analyze fusion data is developed. From experimental cross sections and results of coupled-channel calculations a dimensionless function is constructed. In collisions of strongly bound nuclei this quantity is very close to a universal function of a variable related to the collision energy, whereas for weakly bound projectiles the effects of breakup coupling are measured by the deviations with respect to this universal function. This technique is applied to collisions of stable and unstable weakly bound isotopes.
Resumo:
Several experiments were performed to investigate both (p, alpha) and (n, alpha) reactions induced on boron isotopes, by means of Quasi-Free (QF) reactions induced on deuteron target. The experimental study of the astrophysically relevant, (11)B(p, alpha(0))(8)Be reaction was performed by selecting the QF-contribution on the (2)H((11)B, alpha(8)(0)Be)n reaction. Moreover, due to the large interest of a better understanding of (n, alpha) reactions both for nuclear and astrophysical developments, a preliminary study of the (10)B(n, alpha)(7)Li through the QF (2)H((10)B, alpha(7)Li)p reaction was also performed. The results concerning the two experiments will be shown and discussed.
Resumo:
In this work, we investigate the limitation of the use of strength coefficients on double folding potentials to study the presence of the threshold anomaly in the elastic scattering of halo nuclei at near barrier energies. For this purpose, elastic angular distributions and reaction cross sections for the He-6 on Bi-209 are studied. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The (2)H(d,p)(3)H and (2)H(d,n)(3)He reactions have been indirectly studied by means of the Trojan Horse Method applied to the quasi-free (2)H((3)He, p(3)H)(1)H (2)H((3)He, n(3)He)(1)H reaction at 18 MeV of beam energy. This is the first experiment where the spectator (here (1)H) has been detected in coincidence with the charged participant, avoiding the limitations of standard neutron detectors. The d - d relative energy has been measured from 1.5 MeV down to 2 keV, at center of mass angles from 40A degrees to 170A degrees. Indirect angular distributions are compared with the direct behaviour in the overlapping regions.
Resumo:
Cross sections for the (6)Li(p,gamma)(7)Be, (7)Li(n,gamma)(8)Li (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be capture reactions have been investigated in the framework of the potential model. The main ingredients of the potential model are the potentials used to generate the continuum and bound-state wave functions and spectroscopic factors of the corresponding bound systems. The spectroscopic factors for the (7)Li circle times n=(8)Li(gs), (8)Li circle times n=(9)Li(gs) bound systems were obtained from a FR-DWBA analysis of neutron transfer reactions induced by (8)Li radioactive beam on a (9)Be target, while spetroscopic factor for the (8)Li circle times n=(9)Be(gs) bound system were obained from a proton transfer reaction. From the obtained capture reaction cross section, reaction rate for the (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be direct neutron and proton capture were determined and compared with other experimental and calculated values.
Resumo:
The bare nucleus S(E) factors for the (2)H(d, p)(3)H and (2)H(d.n)(3)He reactions have been measured for the first time via the Trojan Horse Method off the proton in (3)He from 1.5 MeV down to 2 key. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre-Main-Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from available direct data with new S(0) values of 57.4 +/- 1.8 MeVb for (3)H + p and 60.1 +/- 1.9 MeV b for (3)He + n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors. (C) 2011 Elsevier By. All rights reserved.
Resumo:
Complex fac-[RuCl(3)(NO)(P-N)] (1) was synthesized from the reaction of [RuCl(3)(H(2)O)(2)(NO)] and the P-N ligand, o-[(N,N-dimethylamino)phenyl]diphenylphosphine) in refluxing methanol solution, while complex mer,trans-[RuCl(3)(NO)(P-N)] (2) was obtained by photochemical isomerization of (1) in dichloromethane solution. The third possible isomer mer, cis-[RuCl(3)(NO)(P-N)] (3) was never observed in direct synthesis as well as in photo-or thermal-isomerization reactions. When refluxing a methanol solution of complex (2) a thermally induced isomerization occurs and complex (1) is regenerated. The complexes were characterized by NMR ((31)P{(1)H}, (15)N{1H} and 1H), cyclic voltammetry, FTIR, UV-Vis, elemental analysis and X-ray diffraction structure determination. The (31)P{(1)H} NMR revealed the presence of singlet at 35.6 for (1) and 28.3 ppm for (2). The (1)H NMR spectrum for (1) presented two singlets for the methyl hydrogens at 3.81 and 3.13 ppm, while for (2) was observed only one singlet at 3.29 ppm. FTIR Ru-NO stretching in KBr pellets or CH(2)Cl(2) solution presented 1866 and 1872 cm(-1) for (1) and 1841 and 1860 cm(-1) for (2). Electrochemical analysis revealed a irreversible reduction attributed to Ru(II)-NO(+) -> Ru(II)-NO(0) at -0.81 V and -0.62 V, for (1) and (2), respectively; the process Ru(II) -> Ru(III), as expected, is only observed around 2.0 V, for both complexes. Studies were conducted using (15)NO and both complexes were isolated with (15)N-enriched NO. Upon irradiation, the complex fac-[RuCl(3)(NO)(P-N)] (1) does not exchange (14)NO by (15)NO, while complex mer, trans-[RuCl(3)(NO)(P-N)] (2) does. Complex mer, trans-[RuCl(3)((15)NO)(P-N)] (2`) was obtained by direct reaction of mer, trans-[RuCl(3)(NO)(P-N)] (2) with (15)NO and the complex fac-[RuCl(3)((15)NO)(P-N)] (1`) was obtained by thermal-isomerization of mer, trans-[RuCl(3)((15)NO)(P-N)] (2`). DFT calculation on isomer energies, electronic spectra and electronic configuration were done. For complex (1) the HOMO orbital is essentially Ru (46.6%) and Cl (42.5%), for (2) Ru (57.4%) and Cl (39.0%) while LUMO orbital for (1) is based on NO (52.9%) and is less extent on Ru (38.4%), for (2) NO (58.2%) and Ru (31.5%). (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
This study presents the syntheses and characterization of 2-mercaptopyridine (pyS(-)) complexes containing ruthenium(II) with the following general formula [Ru(pyS)(2)(P-P)], P-P = (c-dppen) = cis-1,2-bis(diphenylphosphino)ethylene) (1); (dppe)=1,2-bis(diphenylphosphino)ethane (2); (dppp)=1,3-bis(diphenylphosphino)propane (3) and (dppb) = 1,4-bis(diphenylphosphino)butane (4). The complexes were synthesized from the mer- or fac-[RuCl(3)(NO)(P-P)] precursors in the presence of triethylamine in methanol solution with dependence of the product on the P-P ligand. The reaction of pyS- with a ruthenium complex containing a bulky aromatic diphosphine dppb disclosed a major product with a dangling coordinated dppbO-P, the [Ru(pyS)(2)(NO)(eta(1)-dppbO-P)]PF(6) (5). In addition, this work also presents and discusses the spectroscopic and electrochemical behavior of 1-5. and report the X-ray structures for I and S. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The reaction of cis-[RuCl(2)(P-P)(N-N)] type complexes (P-P = 1,4-bis(diphenylphosphino)butane or (1,1`-diphenylphosphino)ferrocene; N-N = 2,2`-bipyridine or 1,10-phenantroline) with monodentate ligands (L), such as 4-methylpyridine, 4-phenylpyridine and benzonitrile forms [RuCl(L)(P-P)(N-N)](+) species Upon characterization of the isolated compounds by elemental analysis, (31)P{(1)H} NMR and X-ray crystallography it was found out that the type of the L ligand determines its position in relation to the phosphorus atom. While pyridine derivatives like 4-methylpyridine and 4-phenylpyridine coordinate trans to the phosphorus atom, the benzonitrile ligand (bzCN), a good pi acceptor, coordinates trans to the nitrogen atom. A (31)P{(1)H} NMR experiment following the reaction of the precursor cis-[RuCl(2)(dppb)(phen)] with the benzonitrile ligand shows that the final position of the entering ligand in the complex is better defined as a consequence of the competitive effect between the phosphorus atom and the cyano-group from the benzonitrile moiety and not by the trans effect. In this case, the benzonitrile group is stabilized trans to one of the nitrogen atoms of the N-N ligand. A differential pulse voltammetry experiment confirms this statement. In both experiments the [RuCl(bzCN)(dppb)(phen)]PF(6) species with the bzCN ligand positioned trans to a phosphorus atom of the dppb ligand was detected as an intermediate complex. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
alpha-diamines, such as ethylendiamine and o-phenylendiamine, add to 3,4-aryl-disubstituted 1,2,5-thiadiazole 1,1-dioxides to give dihydropyrazines or quinoxalines, respectively and sulfamide. The new compound acenaphtho [5,6-b]-2,3-dihydropyrazine was synthesized and characterized. The addition of ethylendiamine to 3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide gives 3,4-disubstituted thiadiazoildine 1,1-dioxide, dihydropyrazines, or pyrazines, depending on the reaction condition used. The reactions were followed by cyclic voltammetry and NMR spectroscopy which, in some cases, allowed the detection of the thiadiazolidine intermediate. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Photochemical and photophysical properties of 1-(2-quinolyl)-2-naphthol (2QN) in water and organic solvents, as well in glassy media were studied to investigate the occurrence of intramolecular excited state prototropic reactions between the naphthol and quinoline rings. Spectral data show the two chromophores apparently behaving independently. However, in acid aqueous media or in low polarity solvents a new electronic transition red shifted band with respect to that of the parent compounds assigned to an intramolecular H-bond and to a quinoid form, respectively, shows up. Model calculations and R-X data lend support to a minimum energy conformer having a dihedral angle of similar to 39 degrees between the two groups. Singlet excited state properties (S-1) show a high suppressive effect of one ring over the other, resulting in very low emission yields at room temperature. The occurrence of excited state intramolecular proton transfer is observed in water (zwitter ion form) and in low polarity media (quinoid form) and originates from a previously CT H-bonded state. Phosphorescence data allowed a reasonable description of the electronic states of 2QN. In addition two new derivatives were prepared having the N atom blocked by methylation and both the N and O groups blocked by a CH2 bridge. The spectral data of these two compounds confirmed the attributions made for 2QN. (C) 2007 Elsevier B.V. All rights reserved.