901 resultados para Pedagogy of architectural project
Resumo:
School reform is a major concern in many countries that seek to improve their educational systems and enhance their performances. In consequence, many global schemes, theories, studies, attempts, and programmes have been introduced to promote education in recent years. Saudi Arabia is one of these countries that implemented educational change by introducing many initiatives. The Tatweer Programme is one of these initiatives and is considered as a major recent reform. The main purpose of this study is to investigate this reform in depth by examining the perceptions and experiences of the Tatweer leaders and teachers to find out which extent they have been enabled to be innovative, and to examine the types of leadership and decision-making that have been undertaken by such schools. This study adopted a qualitative case study that employed interviews, focus groups and documentary analysis. The design of the study has been divided into two phases; the first phase was the feasibility study and the second phase was the main study. The research sample of the feasibility study was head teachers, educational experts and Tatweer Unit’s members. The sample of the main study was three Tatweer schools, Tatweer Unit members and one official of Tatweer Project in Riyadh. The findings of this study identified the level of autonomy in managing the school; the Tatweer schools’ system is semi-autonomous when it comes to the internal management, but it lacks autonomy when it comes to staff appointment, student assessment, and curriculum development. In addition, the managerial work has been distributed through teams and members; the Excellence Team plays a critical role in school effectiveness leading an efficient change. Moreover, Professional Learning Communities have been used to enhance the work within Tatweer schools. Finally the findings show that there have been major shifts in the Tatweer schools’ system; the shifting from centralisation to semi-decentralisation; from the culture of the individual to the culture of community; from the traditional school to one focused on self-evaluation and planning; from management to leadership; and from an isolated school being open to society. These shifts have impacted positively on the attitudes of students, parents and staff.
Resumo:
This paper provides an account of the Cultural Value of Architecture in Homes and Neighbourhoods, (CVoA), a project developed with the Royal Institute of British Architects (RIBA). The first stage of the project was a critical review of ‘grey literature’ since 2000, industry based research on the value of architecture subdivided into themes: overall value; health and wellbeing; neighbourhood cohesion and heritage and belonging. Findings from the review revealed a marked absence of evidence of the value of architecture and an over preoccupation with the final building, the product of an interdisciplinary team not just Architects, as well as a general confusion about what it is that Architects do. Further consultation has led to the development of a framework for defining and communicating the skillsets of Architects and for developing an evidence base for their value. Our target audience is non-Architects as we are concerned with making the profession more inclusive hence our desire to create simple definitions and terminology.
Resumo:
This project is based on Artificial Intelligence (A.I) and Digital Image processing (I.P) for automatic condition monitoring of sleepers in the railway track. Rail inspection is a very important task in railway maintenance for traffic safety issues and in preventing dangerous situations. Monitoring railway track infrastructure is an important aspect in which the periodical inspection of rail rolling plane is required.Up to the present days the inspection of the railroad is operated manually by trained personnel. A human operator walks along the railway track searching for sleeper anomalies. This monitoring way is not more acceptable for its slowness and subjectivity. Hence, it is desired to automate such intuitive human skills for the development of more robust and reliable testing methods. Images of wooden sleepers have been used as data for my project. The aim of this project is to present a vision based technique for inspecting railway sleepers (wooden planks under the railway track) by automatic interpretation of Non Destructive Test (NDT) data using A.I. techniques in determining the results of inspection.
Resumo:
A laboratory offset press has been developed over the last five years at PAPRO for testing print qualityon newsprint, as at present, there is no good way for the mills to test this issue. In this project a comparisonhas been made between a laboratory offset press and a commercial press to see if the laboratoryoffset press can be used as a reliable test method or if a further development is needed.To evaluate the method, similar papers have been printed in both presses and compared using imageanalysis techniques. All together eighteen samples were tested which is enough to give comparableresults. The print quality showed a high variation, the values from the laboratory offset press and thecommercial press were not following the same trends. At present time the laboratory offset press needsome further development before it can be used as a reliable test method for halftone prints. Even sosome conclusions were made.The newsprint that has been used came from Norske Skog Tasman Mill (Kawerau), since the otheraim of this project was to do a repeatability study of their three existing paper machines to distinguishpossible differences in the production. The paper samples were taken from each paper machine on sixdifferent dates to give a representative result. This also gave the opportunity to compare the machinesbetween themselves. Comparison between the machines shows that the wire side gives a better andmore even result than the topside on the prints from the laboratory offset press. According to the resultfrom the commercial press the wire side shows a higher degree of variability. Samples from papermachine 2 and 3 were less variable and had the lowest standard deviation of grey level for solid areas.This suggests that newsprints from PM 2 and PM 3 give a more even print quality with a better inkcoverage.
Resumo:
The purpose of this project is to update the tool of Network Traffic Recognition System (NTRS) which is proprietary software of Ericsson AB and Tsinghua University, and to implement the updated tool to finish SIP/VoIP traffic recognition. Basing on the original NTRS, I analyze the traffic recognition principal of NTRS, and redesign the structure and module of the tool according to characteristics of SIP/VoIP traffic, and then finally I program to achieve the upgrade. After the final test with our SIP data trace files in the updated system, a satisfactory result is derived. The result presents that our updated system holds a rate of recognition on a confident level in the SIP session recognition as well as the VoIP call recognition. In the comparison with the software of Wireshark, our updated system has a result which is extremely close to Wireshark’s output, and the working time is much less than Wireshark. In the aspect of practicability, the memory overflow problem is avoided, and the updated system can output the specific information of SIP/VoIP traffic recognition, such as SIP type, SIP state, VoIP state, etc. The upgrade fulfills the demand of this project.
Resumo:
In this project, two broad facets in the design of a methodology for performance optimization of indexable carbide inserts were examined. They were physical destructive testing and software simulation.For the physical testing, statistical research techniques were used for the design of the methodology. A five step method which began with Problem definition, through System identification, Statistical model formation, Data collection and Statistical analyses and results was indepthly elaborated upon. Set-up and execution of an experiment with a compression machine together with roadblocks and possible solution to curb road blocks to quality data collection were examined. 2k factorial design was illustrated and recommended for process improvement. Instances of first-order and second-order response surface analyses were encountered. In the case of curvature, test for curvature significance with center point analysis was recommended. Process optimization with method of steepest ascent and central composite design or process robustness studies of response surface analyses were also recommended.For the simulation test, AdvantEdge program was identified as the most used software for tool development. Challenges to the efficient application of this software were identified and possible solutions proposed. In conclusion, software simulation and physical testing were recommended to meet the objective of the project.
Resumo:
Concentrated solar power systems are expected to be sited in desert locations where the direct normal irradiation is above 1800 kWh/m2.year. These systems include large solar collector assemblies, which account for a significant share of the investment cost. Solarreflectors are the main components of these solar collector assemblies and dust/sand storms may affect their reflectance properties, either by soiling or by surface abrasion. While soiling can be reverted by cleaning, surface abrasion is a non reversible degradation.The aim of this project was to study the accelerated aging of second surface silvered thickglass solar reflectors under simulated sandstorm conditions and develop a multi-parametric model which relates the specular reflectance loss to dust/sand storm parameters: wind velocity, dust concentration and time of exposure. This project focused on the degradation caused by surface abrasion.Sandstorm conditions were simulated in a prototype environmental test chamber. Material samples (6cm x 6cm) were exposed to Arizona coarse test dust. The dust stream impactedthese material samples at a perpendicular angle. Both wind velocity and dust concentrationwere maintained at a stable level for each accelerated aging test. The total exposure time in the test chamber was limited to 1 hour. Each accelerated aging test was interrupted every 4 minutes to measure the specular reflectance of the material sample after cleaning.The accelerated aging test campaign had to be aborted prematurely due to a contamination of the dust concentration sensor. A robust multi-parametric degradation model could thus not be derived. The experimental data showed that the specular reflectance loss decreasedeither linearly or exponentially with exposure time, so that a degradation rate could be defined as a single modeling parameter. A correlation should be derived to relate this degradation rate to control parameters such as wind velocity and dust/sand concentration.The sandstorm chamber design would have to be updated before performing further accelerated aging test campaigns. The design upgrade should improve both the reliability of the test equipment and the repeatability of accelerated aging tests. An outdoor exposure test campaign should be launched in deserts to learn more about the intensity, frequencyand duration of dust/sand storms. This campaign would also serve to correlate the results of outdoor exposure tests with accelerated exposure tests in order to develop a robust service lifetime prediction model for different types of solar reflector materials.
Resumo:
Friction plays a key role in causing slipperiness as a low coefficient of friction on the road may result in slippery and hazardous conditions. Analyzing the strong relation between friction and accident risk on winter roads is a difficult task. Many weather forecasting organizations use a variety of standard and bespoke methods to predict the coefficient of friction on roads. This article proposes an approach to predict the extent of slipperiness by building and testing an expert system. It estimates the coefficient of friction on winter roads in the province of Dalarna, Sweden using the prevailing weather conditions as a basis. Weather data from the road weather information system, Sweden (RWIS) was used. The focus of the project was to use the expert system as a part of a major project in VITSA, within the domain of intelligent transport systems
Resumo:
Within the frame of the project REBUS, "Competitive solar heating systems for residential buildings", which is financed by Nordic Energy Research, a new type of compact solar combisystem with high degree of prefabrication was developed. A hydraulic and control concept was designed with the goal to get highest system efficiency for use with either a condensing natural gas boiler or a pellet boiler. Especially when using the potential of high peak power of modern condensing natural gas boilers, a new operation strategy of a natural gas boiler/solar combisystem can increase the energy savings of a small solar combisystem by about 80% compared to conventional operation strategies.
Resumo:
Recent developments in biological research, has shown that the initial maximum permissible exposure (MPE) limits for protection of workers from risks associated with artificial optical radiations were more stringent than needed. Using the most recent MPE limits for artificial optical radiation this piece of work was focused on the investigation of the level of visible light attenuation needed by automatic welding filters in case of switching failure. Results from the comparison of different exposure standards were employed in investigating the need of Vis/IR and blue light transmittance requirement for automatic welding filters. Real and arbitrary spectra were taken into consideration for the worst and best case scenarios of artificial optical radiations. An excel worksheet developed during the execution of this project took into consideration the exposure from different light sources and the precision of the spectrometer used in measuring the transmittances of a welding filter. The worksheet was developed and tested with known product properties to investigate the validity of its formulation. The conclusion drawn from this project was that attenuation in the light state will be needed for products with the darkest state shade 11 or higher. Also shown is that current welding filter protects the eye well enough even in the case of switching failure.
Resumo:
The main aim of this project is to develop an ESES lab on a full scale system. The solar combisystem used is available most of the time and is only used twice a year to carry out some technical courses. At the moment, there are no other laboratories about combisystems. The experiments were designed in a way to use the system to the most in order to help the students apply the theoretical knowledge in the solar thermal course as well as make them more familiar with solar systems components. The method adopted to reach this aim is to carry out several test sequences on the system, in order to help formulating at the end some educating experiments. A few tests were carried out at the beginning of the project just for the sake of understanding the system and figuring out if any additional measuring equipment is required. The level of these tests sequences was varying from a simple energy draw off or collector loop controller respond tests to more complicated tests, such as the use of the ‘collector’ heater to simulate the solar collector effect on the system. The tests results were compared and verified with the theoretical data wherever relevant. The results of the experiment about the use of the ‘collector’ heater instead of the collector were positively acceptable. Finally, the Lab guide was developed based on the results of these experiments and also the experience gotten while conducting them. The lab work covers the theories related to solar systems in general and combisystems in particular.
Resumo:
The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This is mainly because of the higher present cost of the solar thermal power plants, but also for the time that is needed in order to build them. Though economic attractiveness of different Concentrating technologies varies, still PV power dominates the market. The price of CSP is expected to drop significantly in the near future and wide spread installation of them will follow. The main aim of this project is the creation of different relevant case studies on solar thermal power generation and a comparison betwwen them. The purpose of this detailed comparison is the techno-economic appraisal of a number of CSP systems and the understanding of their behaviour under various boundary conditions. The CSP technologies which will be examined are the Parabolic Trough, the Molten Salt Power Tower, the Linear Fresnel Mirrors and the Dish Stirling. These systems will be appropriatly sized and simulated. All of the simulations aim in the optimization of the particular system. This includes two main issues. The first is the achievement of the lowest possible levelized cost of electricity and the second is the maximization of the annual energy output (kWh). The project also aims in the specification of these factors which affect more the results and more specifically, in what they contribute to the cost reduction or the power generation. Also, photovoltaic systems will be simulated under same boundary conditions to facolitate a comparison between the PV and the CSP systems. Last but not leats, there will be a determination of the system which performs better in each case study.
Resumo:
The demand for cooling and air-conditioning of building is increasingly ever growing. This increase is mostly due to population and economic growth in developing countries, and also desire for a higher quality of thermal comfort. Increase in the use of conventional cooling systems results in larger carbon footprint and more greenhouse gases considering their higher electricity consumption, and it occasionally creates peaks in electricity demand from power supply grid. Solar energy as a renewable energy source is an alternative to drive the cooling machines since the cooling load is generally high when solar radiation is high. This thesis examines the performance of PV/T solar collector manufactured by Solarus company in a solar cooling system for an office building in Dubai, New Delhi, Los Angeles and Cape Town. The study is carried out by analyzing climate data and the requirements for thermal comfort in office buildings. Cooling systems strongly depend on weather conditions and local climate. Cooling load of buildings depend on many parameters such as ambient temperature, indoor comfort temperature, solar gain to the building and internal gains including; number of occupant and electrical devices. The simulations were carried out by selecting a suitable thermally driven chiller and modeling it with PV/T solar collector in Polysun software. Fractional primary energy saving and solar fraction were introduced as key figures of the project to evaluate the performance of cooling system. Several parametric studies and simulations were determined according to PV/T aperture area and hot water storage tank volume. The fractional primary energy saving analysis revealed that thermally driven chillers, particularly adsorption chillers are not suitable to be utilizing in small size of solar cooling systems in hot and tropic climates such as Dubai and New Delhi. Adsorption chillers require more thermal energy to meet the cooling load in hot and dry climates. The adsorption chillers operate in their full capacity and in higher coefficient of performance when they run in a moderate climate since they can properly reject the exhaust heat. The simulation results also indicated that PV/T solar collector have higher efficiency in warmer climates, however it requires a larger size of PV/T collectors to supply the thermally driven chillers for providing cooling in hot climates. Therefore using an electrical chiller as backup gives much better results in terms of primary energy savings, since PV/T electrical production also can be used for backup electrical chiller in a net metering mechanism.
Resumo:
The aim of the project is to examine the music salon in Falun as a part of the mining community and in the historical context of European salon culture. A specifc goal is to develop a deeper understanding about the salon when it comes to education and pedagogic ideas. Of a certain interest is Johan Henrik Munktell’s (1804-1861) education travelling (bildningsresor). Inspired by Mendelssohn’s music salon in Berlin and the early salons in Upp-sala he created his own salon in Grycksbo. A letter collection from J.H. Munktell to his father J.J. Munktell in 1828-30 can be considered a unique historical material, which places the salon in Falun in a continental context of culture, education and industrial pretensions. The results have potential to extend the knowledge of Nordic salon culture and how it has infuenced general pedagogy and music education.
Resumo:
Abscisic acid (ABA)-mediated gene expression is a critical component of plant responses to this important hormone, which affects plant growth, development, and responses to environmental stresses. Plant responses to ABA are mediated by a number of factors including PKABA1, an ABA induced protein kinase involved in ABA-suppressed gene expression in cereal grains, and TaWD40, which has previously been shown to physically interact with PKABA1. A full-length 1.9 kb TaWD40 cDNA, CK210682, was sequenced as part of this project. Based on the deduced protein sequence, it is thought that TaWD40 may belong to the family of E3 ubiquitin ligases, possibly targeting PKABA1 for destruction. Construction of expression plasmids for overproduction of the TaWD40 polypeptide in E. coli is currently underway. The TaWD40 cDNA has been successfully amplified from the source plasmid and inserted into an intermediate plasmid, pCR2.1. The TaWD40 cDNA is currently being cloned from the pCR2.1 intermediate plasmid into two different expression vectors, pRSET-A and pMAL-c2x, for future protein production and purification.