918 resultados para Pattern recognition techniques


Relevância:

80.00% 80.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The seminal multiple view stereo benchmark evaluations from Middlebury and by Strecha et al. have played a major role in propelling the development of multi-view stereopsis methodology. Although seminal, these benchmark datasets are limited in scope with few reference scenes. Here, we try to take these works a step further by proposing a new multi-view stereo dataset, which is an order of magnitude larger in number of scenes and with a significant increase in diversity. Specifically, we propose a dataset containing 80 scenes of large variability. Each scene consists of 49 or 64 accurate camera positions and reference structured light scans, all acquired by a 6-axis industrial robot. To apply this dataset we propose an extension of the evaluation protocol from the Middlebury evaluation, reflecting the more complex geometry of some of our scenes. The proposed dataset is used to evaluate the state of the art multiview stereo algorithms of Tola et al., Campbell et al. and Furukawa et al. Hereby we demonstrate the usability of the dataset as well as gain insight into the workings and challenges of multi-view stereopsis. Through these experiments we empirically validate some of the central hypotheses of multi-view stereopsis, as well as determining and reaffirming some of the central challenges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The immune system is perhaps the largest yet most diffuse and distributed somatic system in vertebrates. It plays vital roles in fighting infection and in the homeostatic control of chronic disease. As such, the immune system in both pathological and healthy states is a prime target for therapeutic interventions by drugs-both small-molecule and biologic. Comprising both the innate and adaptive immune systems, human immunity is awash with potential unexploited molecular targets. Key examples include the pattern recognition receptors of the innate immune system and the major histocompatibility complex of the adaptive immune system. Moreover, the immune system is also the source of many current and, hopefully, future drugs, of which the prime example is the monoclonal antibody, the most exciting and profitable type of present-day drug moiety. This brief review explores the identity and synergies of the hierarchy of drug targets represented by the human immune system, with particular emphasis on the emerging paradigm of systems pharmacology. © the authors, publisher and licensee Libertas Academica Limited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present one approach for extending the learning set of a classification algorithm with additional metadata. It is used as a base for giving appropriate names to found regularities. The analysis of correspondence between connections established in the attribute space and existing links between concepts can be used as a test for creation of an adequate model of the observed world. Meta-PGN classifier is suggested as a possible tool for establishing these connections. Applying this approach in the field of content-based image retrieval of art paintings provides a tool for extracting specific feature combinations, which represent different sides of artists' styles, periods and movements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we use the quantum Jensen-Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen-Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated with a continuous-time quantum walk over each graph being compared. In particular, we adopt the closed form solution of the density matrix introduced in Rossi et al. (2013) [27,28] to reduce the computational complexity and to avoid the cumbersome task of simulating the quantum walk evolution explicitly. Next, we compare the mixed states represented by the density matrices using the quantum Jensen-Shannon divergence. With the quantum states for a pair of graphs described by their density matrices to hand, the quantum graph kernel between the pair of graphs is defined using the quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets from both bioinformatics and computer vision. The experimental results demonstrate the effectiveness of the proposed quantum graph kernel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we develop a new graph kernel by using the quantum Jensen-Shannon divergence and the discrete-time quantum walk. To this end, we commence by performing a discrete-time quantum walk to compute a density matrix over each graph being compared. For a pair of graphs, we compare the mixed quantum states represented by their density matrices using the quantum Jensen-Shannon divergence. With the density matrices for a pair of graphs to hand, the quantum graph kernel between the pair of graphs is defined by exponentiating the negative quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets, and demonstrate the effectiveness of the new kernel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of complex networks has recently attracted increasing interest because of the large variety of systems that can be modeled using graphs. A fundamental operation in the analysis of complex networks is that of measuring the centrality of a vertex. In this paper, we propose to measure vertex centrality using a continuous-time quantum walk. More specifically, we relate the importance of a vertex to the influence that its initial phase has on the interference patterns that emerge during the quantum walk evolution. To this end, we make use of the quantum Jensen-Shannon divergence between two suitably defined quantum states. We investigate how the importance varies as we change the initial state of the walk and the Hamiltonian of the system. We find that, for a suitable combination of the two, the importance of a vertex is almost linearly correlated with its degree. Finally, we evaluate the proposed measure on two commonly used networks. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density operator with each of them. Hence, we decide to simulate the evolution of a continuous-time quantum walk on each graph and we propose a way to associate a suitable quantum state with it. With the density operator of this quantum state to hand, the graph kernel is defined as a function of the quantum Jensen-Shannon divergence between the graph density operators. We evaluate the performance of our kernel on several standard graph datasets from bioinformatics. We use the Principle Component Analysis (PCA) on the kernel matrix to embed the graphs into a feature space for classification. The experimental results demonstrate the effectiveness of the proposed approach. © 2013 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the most fundamental problem that we face in the graph domain is that of establishing the similarity, or alternatively the distance, between graphs. In this paper, we address the problem of measuring the similarity between attributed graphs. In particular, we propose a novel way to measure the similarity through the evolution of a continuous-time quantum walk. Given a pair of graphs, we create a derived structure whose degree of symmetry is maximum when the original graphs are isomorphic, and where a subset of the edges is labeled with the similarity between the respective nodes. With this compositional structure to hand, we compute the density operators of the quantum systems representing the evolution of two suitably defined quantum walks. We define the similarity between the two original graphs as the quantum Jensen-Shannon divergence between these two density operators, and then we show how to build a novel kernel on attributed graphs based on the proposed similarity measure. We perform an extensive experimental evaluation both on synthetic and real-world data, which shows the effectiveness the proposed approach. © 2013 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The analysis of complex networks is usually based on key properties such as small-worldness and vertex degree distribution. The presence of symmetric motifs on the other hand has been related to redundancy and thus robustness of the networks. In this paper we propose a method for detecting approximate axial symmetries in networks. For each pair of nodes, we define a continuous-time quantum walk which is evolved through time. By measuring the probability that the quantum walker to visits each node of the network in this time frame, we are able to determine whether the two vertices are symmetrical with respect to any axis of the graph. Moreover, we show that we are able to successfully detect approximate axial symmetries too. We show the efficacy of our approach by analysing both synthetic and real-world data. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we propose a prototype size selection method for a set of sample graphs. Our first contribution is to show how approximate set coding can be extended from the vector to graph domain. With this framework to hand we show how prototype selection can be posed as optimizing the mutual information between two partitioned sets of sample graphs. We show how the resulting method can be used for prototype graph size selection. In our experiments, we apply our method to a real-world dataset and investigate its performance on prototype size selection tasks. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a novel template matching approach for the discrimination of handwritten and machine-printed text. We first pre-process the scanned document images by performing denoising, circles/lines exclusion and word-block level segmentation. We then align and match characters in a flexible sized gallery with the segmented regions, using parallelised normalised cross-correlation. The experimental results over the Pattern Recognition & Image Analysis Research Lab-Natural History Museum (PRImA-NHM) dataset show remarkably high robustness of the algorithm in classifying cluttered, occluded and noisy samples, in addition to those with significant high missing data. The algorithm, which gives 84.0% classification rate with false positive rate 0.16 over the dataset, does not require training samples and generates compelling results as opposed to the training-based approaches, which have used the same benchmark.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the latest development in computer science, multivariate data analysis methods became increasingly popular among economists. Pattern recognition in complex economic data and empirical model construction can be more straightforward with proper application of modern softwares. However, despite the appealing simplicity of some popular software packages, the interpretation of data analysis results requires strong theoretical knowledge. This book aims at combining the development of both theoretical and applicationrelated data analysis knowledge. The text is designed for advanced level studies and assumes acquaintance with elementary statistical terms. After a brief introduction to selected mathematical concepts, the highlighting of selected model features is followed by a practice-oriented introduction to the interpretation of SPSS1 outputs for the described data analysis methods. Learning of data analysis is usually time-consuming and requires efforts, but with tenacity the learning process can bring about a significant improvement of individual data analysis skills.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Use of remotely sensed data for environmental and ecological assessment has recently become more widespread in wetland research and management and advantages and limitations of this approach have been addresses (Ozesmi and Bauer 2002). Applications of remote sensing (RS) methods vary in spatial and temporal extent and resolution, in the types of data acquired, and in digital processing and pattern recognition algorithms used.