981 resultados para Particle tracking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

B:RUN is a low-level GIS software designed to help formulate options for the management of the coastal zone of Brunei Darussalam. This contribution presents the oil spill simulation module of B:RUN. This simple module, based largely on wind and sea surface current vector parameters, may be helpful in formulating relevant oil spill contingency plans. It can be easily adapted to other areas, as can the B:RUN software itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In multisource industrial scenarios (MSIS) coexist NOAA generating activities with other productive sources of airborne particles, such as parallel processes of manufacturing or electrical and diesel machinery. A distinctive characteristic of MSIS is the spatially complex distribution of aerosol sources, as well as their potential differences in dynamics, due to the feasibility of multi-task configuration at a given time. Thus, the background signal is expected to challenge the aerosol analyzers at a probably wide range of concentrations and size distributions, depending of the multisource configuration at a given time. Monitoring and prediction by using statistical analysis of time series captured by on-line particle analyzers in industrial scenarios, have been proven to be feasible in predicting PNC evolution provided a given quality of net signals (difference between signal at source and background). However the analysis and modelling of non-consistent time series, influenced by low levels of SNR (Signal-Noise Ratio) could build a misleading basis for decision making. In this context, this work explores the use of stochastic models based on ARIMA methodology to monitor and predict exposure values (PNC). The study was carried out in a MSIS where an case study focused on the manufacture of perforated tablets of nano-TiO2 by cold pressing was performed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data recovered from 11 popup satellite archival tags and 3 surgically implanted archival tags were used to analyze the movement patterns of juvenile northern bluefin tuna (Thunnus thynnus orientalis) in the eastern Pacific. The light sensors on archival and pop-up satellite transmitting archival tags (PSATs) provide data on the time of sunrise and sunset, allowing the calculation of an approximate geographic position of the animal. Light-based estimates of longitude are relatively robust but latitude estimates are prone to large degrees of error, particularly near the times of the equinoxes and when the tag is at low latitudes. Estimating latitude remains a problem for researchers using light-based geolocation algorithms and it has been suggested that sea surface temperature data from satellites may be a useful tool for refining latitude estimates. Tag data from bluefin tuna were subjected to a newly developed algorithm, called “PSAT Tracker,” which automatically matches sea surface temperature data from the tags with sea surface temperatures recorded by satellites. The results of this algorithm compared favorably to the estimates of latitude calculated with the lightbased algorithms and allowed for estimation of fish positions during times of the year when the lightbased algorithms failed. Three near one-year tracks produced by PSAT tracker showed that the fish range from the California−Oregon border to southern Baja California, Mexico, and that the majority of time is spent off the coast of central Baja Mexico. A seasonal movement pattern was evident; the fish spend winter and spring off central Baja California, and summer through fall is spent moving northward to Oregon and returning to Baja California.