992 resultados para Particle Detection
Resumo:
A new scheme is proposed for the detection of premature ventricular beats, which is a vital function in rhythm monitoring of cardiac patients. A transformation based on the first difference of the digitized electrocardiogram (ECG) signal is developed for the detection and delineation of QRS complexes. The method for classifying the abnormal complexes from the normal ones is based on the concepts of minimum phase and signal length. The parameters of a linear discriminant function obtained from a training feature vector set are used to classify the complexes. Results of application of the scheme to ECG of two arrhythmia patients are presented.
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
We present a low-complexity algorithm based on reactive tabu search (RTS) for near maximum likelihood (ML) detection in large-MIMO systems. The conventional RTS algorithm achieves near-ML performance for 4-QAM in large-MIMO systems. But its performance for higher-order QAM is far from ML performance. Here, we propose a random-restart RTS (R3TS) algorithm which achieves significantly better bit error rate (BER) performance compared to that of the conventional RTS algorithm in higher-order QAM. The key idea is to run multiple tabu searches, each search starting with a random initial vector and choosing the best among the resulting solution vectors. A criterion to limit the number of searches is also proposed. Computer simulations show that the R3TS algorithm achieves almost the ML performance in 16 x 16 V-BLAST MIMO system with 16-QAM and 64-QAM at significantly less complexities than the sphere decoder. Also, in a 32 x 32 V-BLAST MIMO system, the R3TS performs close to ML lower bound within 1.6 dB for 16-QAM (128 bps/Hz), and within 2.4 dB for 64-QAM (192 bps/Hz) at 10(-3) BER.
Resumo:
In order to describe the atmospheric turbulence which limits the resolution of long-exposure images obtained using ground-based large telescopes, a simplified model of a speckle pattern, reducing the complexity of calculating field-correlations of very high order, is presented. Focal plane correlations are used instead of correlations in the spatial frequency domain. General tripple correlations for a point source and for a binary are calculated and it is shown that they are not a strong function of the binary separation. For binary separations close to the diffraction limit of the telescope, the genuine triple correlation technique ensures a better SNR than the near-axis Knox-Thompson technique. The simplifications allow a complete analysis of the noise properties at all levels of light.
Resumo:
A cytosine-specific DNA methyltransferase (EC 2.1.1.37) has been purified to near homogeneity from a mealybug (Planococcus lilacinus). The enzyme can methylate cytosine residues in CpG sequences as well as CpA sequences. The apparent molecular weight of the enzyme was estimated as 135,000 daltons by FPLC. The enzyme exhibits a processive mode of action and a salt dependance similar to mammalian methylases. Mealybug methylase exhibits a preference for denatured DNA substrates.
Resumo:
In a number of applications of computerized tomography, the ultimate goal is to detect and characterize objects within a cross section. Detection of edges of different contrast regions yields the required information. The problem of detecting edges from projection data is addressed. It is shown that the class of linear edge detection operators used on images can be used for detection of edges directly from projection data. This not only reduces the computational burden but also avoids the difficulties of postprocessing a reconstructed image. This is accomplished by a convolution backprojection operation. For example, with the Marr-Hildreth edge detection operator, the filtering function that is to be used on the projection data is the Radon transform of the Laplacian of the 2-D Gaussian function which is combined with the reconstruction filter. Simulation results showing the efficacy of the proposed method and a comparison with edges detected from the reconstructed image are presented
Resumo:
Entamoeba histolytica-specific serum IgG, IgA, IgM and IgE antibodies were assayed in cases of amoebiasis in an endemic area. Patient groups consisted of amoebic liver abscess (n=18), pre-abscess hepatic amoebiasis (n=22) and amoebic colitis (n=30). Control subjects comprised 26 asymptomatic cyst passers, 13 giardiasis cases, 20 typhoid patients and 24 non-amoebic individuals. Serum IgG was assayed by ELISA, using a monoclonal anti IgG β- galactosidase (IgG β-gal) conjugate, a polyclonal avidin biotin horse radish peroxidase (AB-HRP), and a polyclonal anti IgG horse radish peroxidase (IgG HRP) conjugate. IgA and IgM were assayed by the β-gal ELISA and IgE by AB-HRP. Diagnostically significant IgG and IgA while lower IgM and IgE antibody levels were seen in extraintestinal cases. About 40% of suspected pre-abscess hepatic amoebiasis cases were confirmed by antibody estimation. All isotype levels in most dysentery cases were in the range of the controls.
Resumo:
With biotin labelled and unlabelled immunoglobulin fraction of anticysticercal antibodies raised in rabbits, tandem-enzyme linked immunosorbent assay (T-ELISA), capture-dot immunobinding assay (C-DIA) and reverse passive haemagglutination (RPHA) tests were developed for the detection of cysticercal antigens. The sensitivity levels were respectively, 9 ng ml−1, 2 ng ml−1 and 45 ng ml−1. All three methods were of equal specificity as none of the antigens of Mycobacterium tuberculosis, Japanese encephalitis virus and Echinococcus granulosus reacted with anticysticercal IgG. Cysticercal antigens were detected in the cerebrospinal fluid (CSF) of confirmed neurocysticercosis at sensitivity levels of 91·6% by T-ELISA, 83·33% by C-DIA and 75% by RPHA and specificity levels of >93%. Western analysis of these antigens in CSF showed mainly antigens of 64–68 kDa and 24–28 kDA. By crossed immunoelectrophoresis (CIE) with an intermediate gel technique, five circulating antigens were found to be released from scolex and fluid.
Resumo:
A model incorporating the surface conductivity and morphology of the composite solid electrolytes is envisaged to explain their conduction behaviour. The conductivity data on LinX−50 m/o Al2O3 (X = F−, Cl−, Br−, CO32−, SO42−, PO43−) composites prepared by thermal decomposition of LinX·2nAl(OH)3·mH2O salts and Li2SO4−A (A=Al2O3, CeO2, Y2O3, Yb2O3, Zr2O3, ZrO2 and BaTiO3) composites prepared by mechanical mixing of the components are examined in the light of this model. It is surmised that the particle size of both the dispersoids and the hosts not only influence the ionic conductivity of the host matrix but also affect its bulk properties.
Resumo:
Fine-particle rare-earth-metal zirconates, Ln2Zr2O7, where Ln = La, Ce, Pr, Nd, Sm, Gd and Dy having the pyrochlore structure have been prepared using a novel combustion process. The process employs aqueous solutions of the corresponding rare-earth-metal nitrate, zirconium nitrate and carbohydrazide/urea in the required molar ratio. When the solution is rapidly heated to 350–500 °C it boils, foams and burns autocatalytically to yield voluminous oxides. The formation of single-phase Ln2Zr2O7 has been confirmed by powder X-ray diffraction, infrared and fluorescence spectroscopy. The solid combustion products are fine, having surface areas in the range 6–20 m2 g–1. The cold-pressed Pr2Zr2O7 compact when sintered at 1500 °C, 4 h in air, achieved 99% theoretical density.
Resumo:
Fine particle spinel manganites have been prepared by thermal decomposition of the precursors N2H5M1/3Mn2/3(N2H3COO)3 · H2O (M = Co and Ni) and M1/3 Mn2/3(N2H3COO)2 · 2H2O (M = Mg and Zn), as well as by the combustion of redox mixtures containing M(II) nitrate (M = Mg, Co, Ni, Cu, and Zn), Mn(II) nitrate, and maleic hydrazide (MH) in the required molar ratio. Both the precursor and redox mixtures undergo self-propagating, gas-producing, exothermic reactions once ignited at 250-375°C to yield corresponding manganites in less than 5 min. Formation of single phase products was confirmed by X-ray powder diffraction patterns. The manganites are of submicrometer size and have surface area in the range 20-76 m2/g.
Resumo:
Titanyl hydrazine carboxylate dihydrate, TiO(N2H3COO)2.2H2O, zirconyl hydrazine carboxylate dihydrate, ZrO(N2H3COO)2.2H2O and their solid solution, ZrTiO2(N2H3COO)4.4H2O have been prepared for the first time and investigated as precursors to fine particle TiO2, ZrO2 and ZrTiO4 respectively. Titania(anatase) formed has a very high surface area of 110 m2/g and zirconium titanate showed very low dielectric loss (4 x 10(-4)).
Resumo:
Microbes in natural and artificial environments as well as in the human body are a key part of the functional properties of these complex systems. The presence or absence of certain microbial taxa is a correlate of functional status like risk of disease or course of metabolic processes of a microbial community. As microbes are highly diverse and mostly notcultivable, molecular markers like gene sequences are a potential basis for detection and identification of key types. The goal of this thesis was to study molecular methods for identification of microbial DNA in order to develop a tool for analysis of environmental and clinical DNA samples. Particular emphasis was placed on specificity of detection which is a major challenge when analyzing complex microbial communities. The approach taken in this study was the application and optimization of enzymatic ligation of DNA probes coupled with microarray read-out for high-throughput microbial profiling. The results show that fungal phylotypes and human papillomavirus genotypes could be accurately identified from pools of PCR amplicons generated from purified sample DNA. Approximately 1 ng/μl of sample DNA was needed for representative PCR amplification as measured by comparisons between clone sequencing and microarray. A minimum of 0,25 amol/μl of PCR amplicons was detectable from amongst 5 ng/μl of background DNA, suggesting that the detection limit of the test comprising of ligation reaction followed by microarray read-out was approximately 0,04%. Detection from sample DNA directly was shown to be feasible with probes forming a circular molecule upon ligation followed by PCR amplification of the probe. In this approach, the minimum detectable relative amount of target genome was found to be 1% of all genomes in the sample as estimated from 454 deep sequencing results. Signal-to-noise of contact printed microarrays could be improved by using an internal microarray hybridization control oligonucleotide probe together with a computational algorithm. The algorithm was based on identification of a bias in the microarray data and correction of the bias as shown by simulated and real data. The results further suggest semiquantitative detection to be possible by ligation detection, allowing estimation of target abundance in a sample. However, in practise, comprehensive sequence information of full length rRNA genes is needed to support probe design with complex samples. This study shows that DNA microarray has the potential for an accurate microbial diagnostic platform to take advantage of increasing sequence data and to replace traditional, less efficient methods that still dominate routine testing in laboratories. The data suggests that ligation reaction based microarray assay can be optimized to a degree that allows good signal-tonoise and semiquantitative detection.
Resumo:
The granular flow down an inclined plane is simulated using the discrete element (DE) technique to examine the extent to which the dynamics of an unconfined dense granular flow can be well described by a hard particle model First, we examine the average coordination number for the particles in the flow down an inclined plane using the DE technique using the linear contact model with and without friction, and the Hertzian contact model with friction The simulations show that the average coordination number decreases below 1 for values of the spring stiffness corresponding to real materials, such as sand and glass, even when the angle of inclination is only 10 larger than the angle of repose Additional measures of correlations in the system, such as the fraction of particles with multibody contact, the force ratio (average ratio of the magnitudes of the largest and the second largest force on a particle), and the angle between the two largest forces on the particle, show no evidence of force chains or other correlated motions in the system An analysis of the bond-orientational order parameter indicates that the flow is in the random state, as in event-driven (ED) simulations V Kumaran, J Fluid Mech 632, 107 (2009), J Fluid Mech 632, 145 (2009)] The results of the two simulation techniques for the Bagnold coefficients (ratio of stress and square of the strain rate) and the granular temperature (mean square of the fluctuating velocity) are compared with the theory V Kumaran, J Fluid Mech 632, 107 (2009), J Fluid Mech 632, 145 (2009)] and are found to be in quantitative agreement In addition, we also conduct a comparison of the collision frequency and the distribution of the precollisional relative velocities of particles in contact The strong correlation effects exhibited by these two quantities in event-driven simulations V Kumaran, J Fluid Mech 632, 145 (2009)] are also found in the DE simulations (C) 2010 American Institute of Physics doi 10 1063/1 3504660]