900 resultados para Partial least squares
Resumo:
In this paper, we propose a new on-line learning algorithm for the non-linear system identification: the swarm intelligence aided multi-innovation recursive least squares (SI-MRLS) algorithm. The SI-MRLS algorithm applies the particle swarm optimization (PSO) to construct a flexible radial basis function (RBF) model so that both the model structure and output weights can be adapted. By replacing an insignificant RBF node with a new one based on the increment of error variance criterion at every iteration, the model remains at a limited size. The multi-innovation RLS algorithm is used to update the RBF output weights which are known to have better accuracy than the classic RLS. The proposed method can produces a parsimonious model with good performance. Simulation result are also shown to verify the SI-MRLS algorithm.
Resumo:
A fundamental principle in data modelling is to incorporate available a priori information regarding the underlying data generating mechanism into the modelling process. We adopt this principle and consider grey-box radial basis function (RBF) modelling capable of incorporating prior knowledge. Specifically, we show how to explicitly incorporate the two types of prior knowledge: (i) the underlying data generating mechanism exhibits known symmetric property, and (ii) the underlying process obeys a set of given boundary value constraints. The class of efficient orthogonal least squares regression algorithms can readily be applied without any modification to construct parsimonious grey-box RBF models with enhanced generalisation capability.
Resumo:
In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate B-spline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches.
Resumo:
An external input signal is incorporated into a self-tuning controller which, although it is based on a CARMA system model, employs a state-space framework for control law calculations. Steady-state set point following can then be accomplished even when only a recursive least squares parameter estimation scheme is used, despite the fact that the disturbance affecting the system may well be coloured.
Resumo:
This paper deals with the integration of radial basis function (RBF) networks into the industrial software control package Connoisseur. The paper shows the improved modelling capabilities offered by RBF networks within the Connoisseur environment compared to linear modelling techniques such as recursive least squares. The paper also goes on to mention the way this improved modelling capability, obtained through the RBF networks will be utilised within Connoisseur.
Resumo:
This paper describes the implementation, using a microprocessor, of a self-tuning control algorithm on a heating system. The algorithm is based on recursive least squares parameter estimation with a state-space, pole placement design criterion and shows how the controller behaves when applied to an actual system.
Resumo:
A four-wavelength MAD experiment on a new brominated octanucleotide is reported here. d[ACGTACG(5-BrU)], C77H81BrN30O32P7, (DNA) = 2235, tetragonal, P43212 (No. 96), a = 43.597, c = 26.268 Å, V = 49927.5 Å3, Z = 8, T = 100 K, R = 10.91% for 4312 reflections between 15.0 and 1.46 Å resolution. The self-complementary brominated octanucleotide d[ACGTACG(5-BrU)]2 has been crystallized and data measured to 1.45 Å at both 293 K and a second crystal flash frozen at 100 K. The latter data collection was carried out to the same resolution at the four wavelengths 0.9344, 0.9216, 0.9208 and 0.9003 Å, around the Br K edge at 0.92 Å and the structure determined from a map derived from a MAD data analysis using pseudo-MIR methodology, as implemented in the program MLPHARE. This is one of the first successful MAD phasing experiments carried out at Sincrotrone Elettra in Trieste, Italy. The structure was refined using the data measured at 0.9003 Å, anisotropic temperature factors and the restrained least-squares refinement implemented in the program SHELX96, and the helical parameters are compared with those previously determined for the isomorphous d(ACGTACGT)2 analogue. The asymmetric unit consists of a single strand of octamer with 96 water molecules. No countercations were located. The A-DNA helix geometry obtained has been analysed using the CURVES program.
Resumo:
Studies of the 1H n.m.r. and electronic spectra of a series of alkenylferrocenes including (E) and (Z) stereoisomers of various styrylferrocenes, have provided methods of structure elucidation. Crystals of the title compound are monoclinic, space group P21/c with Z= 4 in a unit cell of dimensions a= 17.603(2), b= 10.218(2), c= 10.072 Å, β= 103.27(2)°. The structure has been determined by the heavy-atom method from diffractometer data and refind by full-matrix least-squares techniques to R= 0.043 for 2 219 unique reflections.
Resumo:
The molecular structure of trans-[PtCl(CCPh)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are monoclinic, space group P21, with a= 12.359(3), b= 13.015(3), c= 9.031(2)Å, β= 101.65(2)°, and Z= 2. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.046 for 1 877 diffractometric intensity data. The crystals contain discrete molecules in which the platinum coordination is square planar. The phenylethynyl group is non-linear, with a Pt–CC angle of 163(2)°. Selected bond lengths are Pt–Cl 2.407(5) and Pt–C 1.98(2)Å. The structural trans influences of CCPh, CHCH2, and CH2SiMe3 ligands in platinum(II) complexes are compared; there is only a small dependence on hybridization at the ligating carbon atom.
Resumo:
The molecular structure of trans-[PtCl(CHCH2)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are orthorhombic, space group Pbcn, with a= 10.686(2), b= 13.832(4), c= 16.129(4)Å, and Z= 4. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.044 for 1 420 diffractometric intensity data. The crystals contain discrete molecules in which the platinum co-ordination is square planar. The Pt–Cl bond vector coincides with a crystallographic diad axis about which the atoms of the vinyl group are disordered. Selected bond lengths (Å) are Pt–Cl 2.398(4), Pt–P 2.295(3), and Pt–C 2.03(2). The Pt–CC angle is 127(2)°. From a survey of the available structural data it is concluded that there is little, if any, back donation from platinum to carbon in platinum–alkenyl linkages.
Resumo:
For both MoO42− and WO42− the maximum rate of uptake by the small intestine of the rat (studied in vitro using the everted sac technique) occurs in the lower ileum. Kinetic constants, derived by a least squares procedure, are compared with those previously obtained for SO42− transport. For both and , , with only small differences between sacs IV and V. Mutual inhibition of MoO42− and WO42− transport and inhibition of both by SO42− are competitive processes. This is shown by the generally good agreement between values and derived values and by V values in the presence and absence of the inhibiting species. The three ions SO42−, MoO42− and WO42− are probably transferred across the intestine by a common carrier system. Implications for the sulphate-molybdenum interaction in molybdosis are discussed.
Resumo:
Dielectric properties of 16 process cheeses were determined over the frequency range 0.3-3 GHz. The effect of temperature on the dielectric properties of process cheeses were investigated at temperature intervals of 10 degrees C between 5 and 85 degrees C. Results showed that the dielectric constant decreased gradually as frequency increased, for all cheeses. The dielectric loss factor (epsilon") decreased from above 125 to below 12 as frequency increased. epsilon' was highest at 5 degrees C and generally decreased up to a temperature between 55 and 75 degrees C. epsilon" generally increased with increasing temperature for high and medium moisture/fat ratio cheeses. epsilon" decreased with temperature between 5 and 55 degrees C and then increased, for low moisture/fat ratio cheese. Partial least square regression models indicated that epsilon' and epsilon" could be used as a quality control screening application to measure moisture content and inorganic salt content of process cheese, respectively. (c) 2005 Elsevier Ltd. All rights reserved..
Conditioning of incremental variational data assimilation, with application to the Met Office system
Resumo:
Implementations of incremental variational data assimilation require the iterative minimization of a series of linear least-squares cost functions. The accuracy and speed with which these linear minimization problems can be solved is determined by the condition number of the Hessian of the problem. In this study, we examine how different components of the assimilation system influence this condition number. Theoretical bounds on the condition number for a single parameter system are presented and used to predict how the condition number is affected by the observation distribution and accuracy and by the specified lengthscales in the background error covariance matrix. The theoretical results are verified in the Met Office variational data assimilation system, using both pseudo-observations and real data.
Resumo:
The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.
Resumo:
Numerical weather prediction (NWP) centres use numerical models of the atmospheric flow to forecast future weather states from an estimate of the current state. Variational data assimilation (VAR) is used commonly to determine an optimal state estimate that miminizes the errors between observations of the dynamical system and model predictions of the flow. The rate of convergence of the VAR scheme and the sensitivity of the solution to errors in the data are dependent on the condition number of the Hessian of the variational least-squares objective function. The traditional formulation of VAR is ill-conditioned and hence leads to slow convergence and an inaccurate solution. In practice, operational NWP centres precondition the system via a control variable transform to reduce the condition number of the Hessian. In this paper we investigate the conditioning of VAR for a single, periodic, spatially-distributed state variable. We present theoretical bounds on the condition number of the original and preconditioned Hessians and hence demonstrate the improvement produced by the preconditioning. We also investigate theoretically the effect of observation position and error variance on the preconditioned system and show that the problem becomes more ill-conditioned with increasingly dense and accurate observations. Finally, we confirm the theoretical results in an operational setting by giving experimental results from the Met Office variational system.