949 resultados para Parametric Vibration
Resumo:
A model of energy harvester based on a simple portal frame structure is presented. The system is considered to be non-ideal system (NIS) due to interaction with the energy source, a DC motor with limited power supply and the system structure. The nonlinearities present in the piezoelectric material are considered in the piezoelectric coupling mathematical model. The system is a bi-stable Duffing oscillator presenting a chaotic behavior. Analyzing the average power variation, and bifurcation diagrams, the value of the control variable that optimizes power or average value that stabilizes the chaotic system in the periodic orbit is determined. The control sensitivity is determined to parametric errors in the damping and stiffness parameters of the portal frame. The proposed passive control technique uses a simple pendulum to tuned to the vibration of the structure to improve the energy harvesting. The results show that with the implementation of the control strategy it is possible to eliminate the need for active or semi active control, usually more complex. The control also provides a way to regulate the energy captured to a desired operating frequency. © 2013 EDP Sciences and Springer.
Resumo:
The vibration during transportation is one of the main causes of fruit damage. The actual methodologies used for damage evaluation in fruits seem to be subjective, since most of them are based on visual evaluation. In this study the effect of vibration, for one and two hours, on polyphenoloxidase (PPO) activity in peach pulp was investigated. The relation among PPO activity variation, postharvest time and resting time were also considered. Results showed that vibration affects PPO activity. However, it was not possible to correlate PPO activity variation and vibration.
Resumo:
This paper develops a novel full analytic model for vibration analysis of solid-state electronic components. The model is just as accurate as finite element models and numerically light enough to permit for quick design trade-offs and statistical analysis. The paper shows the development of the model, comparison to finite elements and an application to a common engineering problem. A gull-wing flat pack component was selected as the benchmark test case, although the presented methodology is applicable to a wide range of component packages. Results showed very good agreement between the presented method and finite elements and demonstrated the usefulness of the method in how to use standard test data for a general application. © 2013 Elsevier Ltd.
Resumo:
Parametric VaR (Value-at-Risk) is widely used due to its simplicity and easy calculation. However, the normality assumption, often used in the estimation of the parametric VaR, does not provide satisfactory estimates for risk exposure. Therefore, this study suggests a method for computing the parametric VaR based on goodness-of-fit tests using the empirical distribution function (EDF) for extreme returns, and compares the feasibility of this method for the banking sector in an emerging market and in a developed one. The paper also discusses possible theoretical contributions in related fields like enterprise risk management (ERM). © 2013 Elsevier Ltd.
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we study the behavior of a semi-active suspension witch external vibrations. The mathematical model is proposed coupled to a magneto rheological (MR) damper. The goal of this work is stabilize of the external vibration that affect the comfort and durability an vehicle, to control these vibrations we propose the combination of two control strategies, the optimal linear control and the magneto rheological (MR) damper. The optimal linear control is a linear feedback control problem for nonlinear systems, under the optimal control theory viewpoint We also developed the optimal linear control design with the scope in to reducing the external vibrating of the nonlinear systems in a stable point. Here, we discuss the conditions that allow us to the linear optimal control for this kind of non-linear system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes an experimental study into the vibration control of a servo system comprising a servo motor and a flexible manipulator. Two modes of the system are controlled by using the servo motor and an accelerometer attached to the tip of the flexible manipulator. The control system is thus non-collocated. It consists of two electrical dynamic absorbers, each of which consists of a modal filter and, in case of an out-of-phase mode, a phase inverter. The experimental results show that each absorber acts as a mechanical dynamic vibration absorber attached to each mode and significantly reduces the settling time for the system response to a step input.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: The main function of the mucociliary system is the removal of particles or substances that are potentially harmful to the respiratory tract. The tuning fork therapeutic for the purpose of bronchial hygiene has still not been described in the literature. The optimal vibration frequency to mobilize secretions is widely debated and varies between 3 and 25 Hz. It is expected that a tuning fork is able to generate vibrations in the thorax, facilitating bronchial hygiene. The aim of the present study is to develop tuning forks with different frequencies, for use in bronchopulmonary hygiene therapy. Methods: The first tuning fork was made with a fixed frequency of 25 Hz and it was recorded in the Brazilian institution of patent registration. This device generated a frequency of 25 Hz and had a weight of 521 g, with dimensions of 600 mm in total length. The device is characterized by a bottom end containing a transducer with a diameter of 62 mm and a thickness of 5/16 mm (8''), a rod removable 148 mm, fork length of 362 mm and an extension at the upper end of sinuous shape bilaterally.The tuning forks must be applied at an angle of 90° directly on the chest wall of the patient after pulmonary auscultation for location of secretions. The tuning fork is activated by squeezing the tips of the extensions together and releasing them in a sudden movement. Results: This study shows the result of the development of others three tuning forks of different dimensions to generate different frequencies. Each equipment reaches a fixed frequency preset of 12, 15 and 20 Hz measured by digital oscilloscope. Conclusions: The tuning fork models developed in this study generated different frequencies proposed by the scientific literature as effective in the mobilization of pulmonary secretions.
Resumo:
Pós-graduação em Química - IQ