1000 resultados para PadGen function
Resumo:
Gross Motor Function Classification System (GMFCS) level was reported by three independent assessors in a population of children with cerebral palsy (CP) aged between 4 and 18 years (n=184; 112 males, 72 females; mean age 10y 10mo [SD 3y 7mo]). A software algorithm also provided a computed GMFCS level from a regional CP registry. Participants had clinical diagnoses of unilateral (n=94) and bilateral (n=84) spastic CP, ataxia (n=4), dyskinesia (n=1), and hypotonia (n=1), and could walk independently with or without the use of an aid (GMFCS Levels I-IV). Research physiotherapist (n=184) and parent/guardian data (n=178) were collected in a research environment. Data from the child's community physiotherapist (n=143) were obtained by postal questionnaire. Results, using the kappa statistic with linear weighting (?1w), showed good agreement between the parent/guardian and research physiotherapist (?1w=0.75) with more moderate levels of agreement between the clinical physiotherapist and researcher (?1w=0.64) and the clinical physiotherapist and parent/guardian (?1w=0.57). Agreement was consistently better for older children (>2y). This study has shown that agreement with parent report increases with therapists'experience of the GMFCS and knowledge of the child at the time of grading. Substantial agreement between a computed GMFCS and an experienced therapist (?1w=0.74) also demonstrates the potential for extrapolation of GMFCS rating from an existing CP registry, providing the latter has sufficient data on locomotor ability.
Resumo:
In order for mammalian fertilization to transpire, spermatozoa must transit through the female reproductive tract and penetrate the outer investments of the oocyte: the cumulus oophorus and the zona pellucida. In order to penetrate the oocyte, spermatozoa must undergo the acrosome reaction. The acrosome reaction results in the exposure of the inner acrosomal membrane (IAM) and proteins that coat it to the extracellular environment. After the acrosome reaction, the IAM becomes the leading edge of spermatozoa undergoing progressive movement. Thus the enzymes which effect lysis of the oocyte investments ought to be located on the IAM. An objective of this study was to identify and characterize enzymatic activity detected on the IAM and provide evidence that they play a role in fertilization. This study also describes procedures for fractionating spermatozoa and isolating the IAM and proteins on its intra- and extra-vesicular surfaces, and describes their development during male gametogenesis. Since the IAM is exposed to the extracellular environment and oviductal milieu after the acrosome reaction, this study also sought to characterize interactions and relationships between factors in the oviductal environment and the enzymes identified on the IAM. The data presented provide evidence that MMP2 and acrosin are co-localized on the IAM, originate from the Golgi apparatus in gametogenesis, and suggest they cooperate in their function. Their localization and results of in vitro fertilization suggests they have a function in zona pellucida penetration. The data also provide evidence that plasminogen, originating from the oviductal epithelium and/or cumulus-oocyte complex, is present in the immediate environment of sperm-egg initial contact and penetration. Additionally, plasminogen interacts with MMP2 and enhances its enzymatic action on the IAM. The data also provide evidence that MMP2 has an important function in penetration of the cumulus oophorus. Holistically, this thesis provides evidence that enzymes on the IAM, originating from the Golgi apparatus in development, have an important function in penetration of the outer investments of the oocyte, and are aided in penetration by plasminogen in the female reproductive tract.
Resumo:
Background. Post-renal transplant anaemia is a potentially reversible cardiovascular risk factor. Graft function, immunosuppressive agents and inhibition of the renin-angiotensin system have been implicated in its aetiology. The evaluation of erythropoietin (EPO) levels may contribute to understanding the relative contributions of these factors. Methods. Two-hundred and seven renal transplant recipients attending the Belfast City Hospital were studied. Clinical and laboratory data were extracted from the medical records and laboratory systems. Results. Of the 207 patients (126 male), 47 (22.7%) were found to be anaemic (males, haemoglobin (Hb) <12 g/dl, females Hb <11g/dl). The anaemic group had a significantly higher mean serum creatinine level (162.8 µmol/l vs 131.0 µmol/l, P <0.001) and lower mean estimated glomerular filtration rate (eGFR) (41.5 ml/min vs 54.9 ml/min, P <0.001) than the non-anaemic group. Individual immunosuppressive regimens were comparable between those with and those without anaemia. Angiotensin converting enzyme inhibitor (ACE-I) or angiotensin receptor blocker (ARB) administration was not more prevalent in those with anaemia compared with those without (36.2 vs 38.8, P = 0.88). There was a significant inverse correlation between Hb levels and serum EPO levels (R = -0.29, P <0.001), but not between EPO levels and eGFR (R = 0.02, P = 0.74). Higher EPO levels were predictive of anaemia, independent of eGFR in multivariate analysis. Conclusion. Anaemia is common in post-renal transplant patients. The levels of renal function and serum EPO and not immunosuppressive regimens or ACE-I/ARB use, are strong and independent predictors of anaemia. © The Author [2007]. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Resumo:
Langerhans cells (LCs) constitute a subset of dendritic cells (DCs) that express the lectin langerin and that reside in their immature state in epidermis. Paradoxically, in mice permitting diphtheria toxin (DT)-mediated ablation of LCs, epidermal LCs reappeared with kinetics that lagged behind that of their putative progeny found in lymph nodes (LNs). Using bone marrow (BM) chimeras, we showed that a major fraction of the langerin(+), skin-derived DCs found in LNs originates from a developmental pathway that is independent from that of epidermal LCs. This pathway, the existence of which was unexpected, originates in the dermis and gives rise to langerin(+) dermal DCs (DDCs) that should not be confused with epidermal LCs en route to LNs. It explains that after DT treatment, some langerin(+), skin-derived DCs reappear in LNs long before LC-derived DCs. Using CD45 expression and BrdU-labeling kinetics, both LCs and langerin(+) DDCs were found to coexist in wild-type mice. Moreover, DT-mediated ablation of epidermal LCs opened otherwise filled niches and permitted repopulation of adult noninflammatory epidermis with BM-derived LCs. Our results stress that the langerin(+) DC network is more complex than originally thought and have implications for the development of transcutaneous vaccines and the improvement of humanized mouse models.
Resumo:
Background and aim: Within the gastrointestinal tract, vagal afferents regulate satiety and food intake via chemical and mechanical mechanisms. Cysteinyl Leukotrienes (CysLTs) are lipid mediators that are believed to regulate food intake and body weight. However, the involvement of vagal afferents in this effect remains to be established. Conversely, Glucagon like peptide-1 (GLP-1) is a satiety and incretin peptide hormone. The effect of obesity on GLP-1 mediated gut-brain signaling has yet to be investigated. Since intestinal vagal afferents’ activity is reduced during obesity, it is intriguing to investigate their responses to GLP-1 in such conditions. Methods: Extracellular recordings were performed on intestinal afferents from normal C57Bl6, low fat fed (LFF), and high fat fed (HFF) mice. To examine the effect on neuronal calcium signaling, calcium-imaging experiments were performed on isolated nodose ganglion neurons. Food intake experiments were conducted using LFF and HFF mice. Oral glucose tolerance tests (OGTT) were carried out. Whole cell patch clamp recordings were performed on nodose ganglion neurons from A) normal C57Bl mice to test the effect of CysLTs on membrane excitability, B) LFF and HFF mice to examine GLP-1 effect on membrane excitability during obesity. c-Fos immunohistochemical techniques were performed to measure the level of neuronal activation in the brainstem of both LFF and HFF mice in response to Ex-4. Results: CysLTs increased intestinal afferent firing rate and mechanosensitivity. In single nodose neuron experiments, CysLTs increased excitability. The GLP-1 agonist Ex-4 significantly decreased food intake in LFF but not HFF mice. However, Ex-4 markedly attenuated the rise in blood glucose in both LFF and HFF mice. The observed increase in nerve firing and mechanosensitivity following the application of GLP-1 and Ex-4 was abolished in HFF mice. Cell membrane excitability was significantly increased by Ex-4 in nodose from LFF but not HFF mice. Ex-4 significantly increased the number of activated neurons in the NTS area of LFF mice but not in their HFF counterparts. Conclusion: The previous observations indicate that the role CysLTs play in regulating satiety is likely to be vagally mediated. Also that satiety, but not incretin, effects of GLP-1 are impaired during obesity.
Resumo:
We have previously characterized IGSF6 (DORA), a novel member of the immunoglobulin superfamily (IGSF) from human and rat expressed in dendritic and myeloid cells. Using a probe from the open reading frame of the rat cDNA, we isolated a cosmid which contains the entire mouse gene. By comparative analysis and reverse transcriptase polymerase chain reaction, we defined the intron/exon structure and the mRNA of the mouse gene and, with respect to human BAC clones, the human gene. The genes span 10 kb (mouse) and 12 kb (human), with six exons arranged in a manner similar to other members of the IGSF. All intron/exon boundaries follow the GT-AG rule. Expression of the mouse Igsf6 gene is restricted to cells of the immune system, particularly macrophages. Northern blot revealed a single mRNA of 2.5 kb, in contrast to the human gene which is expressed as two mRNAs of 1 and 2.5 kb. The human and mouse genes were localized to a locus associated with inflammatory bowel disease. Analysis of the flanking regions of the Igsf6 gene revealed the presence of an unrelated gene, transcribed from the opposite strand of the DNA and oriented such that the Igsf6 gene is encoded entirely within an intron. An identical organization is seen in human. This gene of unknown function is transcribed and processed, contains homologues in Caenorhabditis elegans and prokaryotes, and is expressed in most organs in the mouse.