952 resultados para PROTEIN STRUCTURE
Resumo:
The classical picture of the hydrophobic stabilization of proteins invokes a resemblance between the protein interior and nonpolar solvents, but the extent to which this is the case has often been questioned. The protein interior is believed to be at least as tightly packed as organic crystals, and was shown to have very low compressibility. There is also evidence that these properties are not uniform throughout the protein, and conflicting views exist on the nature of sidechain packing and on its influence on the properties of the protein.
Resumo:
The secondary structure of the trimeric protein 4-chlorobenzoyl coenzyme A dehalogenase from Arthrobacter sp. strain TM-1, the second of three enzymes involved in the dechlorination of 4-chlorobenzoate to form 4-hydroxybenzoate, has been examined. E(mM) for the enzyme was 12.59. Analysis by circular dichroism spectrometry in the far uv indicated that 4-chlorobenzoyl coenzyme A dehalogenase was composed mostly of alpha-helix (56%) with lesser amounts of random coil (21%), beta-turn (13%) and beta-sheet (9%). These data are in close agreement with a computational prediction of secondary structure from the primary amino acid sequence, which indicated 55.8% alpha-helix, 33.7% random coil and 10.5% beta-sheet; the enzyme is, therefore, similar to the 4-chlorobenzoyl coenzyme A dehalogenase from Pseudomonas sp. CBS-3. The three-dimensional structure, including that of the presumed active site, predicted by computational analysis, is also closely similar to that of the Pseudomonas dehalogenase. Study of the stability and physicochemical properties revealed that at room temperature, the enzyme was stable for 24 h but was completely inactivated by heating to 60 degrees C for 5 min; thereafter by cooling at 1 degrees C min(-1) to 45 degrees C, 20.6% of the activity could be recovered. Mildly acidic (pH 5.2) or alkaline (pH 10.1) conditions caused complete inactivation, but activity was fully recovered on returning the enzyme to pH 7.4. Circular dichroism studies also indicated that secondary structure was little altered by heating to 60 degrees C, or by changing the pH from 7.4 to 6.0 or 9.2. Complete, irreversible destruction of, and maximal decrease in the fluorescence yield of the protein at 330-350 nm were brought about by 4.5 M urea or 1.1 M guanidinium chloride. Evidence was obtained to support the hypothetical three-dimensional model, that residues W140 and W167 are buried in a non-polar environment, whereas W182 appears at or close to the surface of the protein. At least one of the enzymes of the dehalogenase system (the combined 4-chlorobenzoate:CoA ligase, the dehalogenase and 4-hydroxybenzoyl coenzyme A thioesterase) appears to be capable of association with the cell membrane.
Resumo:
While protein tyrosine kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. Studies of close to 20 homologs of bacterial protein tyrosine (BY) kinases have inaugurated a blooming new field of research, all since just the end of the last decade. These kinases are key regulators in the polymerization and exportation of the virulence-determining polysaccharides which shield the bacterial from the non-specific defenses of the host. This research is aimed at furthering our understanding of the BY kinases through the use of X-ray crystallography and various in vitro and in vivo experiments. We reported the first crystal structure of a bacterial PTK, the C-terminal kinase domain of E. coli tyrosine kinase (Etk) at 2.5Å resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting evidences, we proposed a unique activation mechanism for BY kinases in Gram-negative bacteria. The phosphorylation of tyrosine residue Y574 at the active site and the specific interaction of P-Y574 with a previously unidentified key arginine residue, R614, unblock the Etk active site and activate the kinase. Both in vitro kinase activity and in vivo antibiotics resistance studies utilizing structure-guided mutants further support the novel activation mechanism. In addition, the level of phosphorylation of their C-terminal Tyr cluster is known to regulate the translocation of extracellular polysaccharides. Our studies have significantly clarified our understanding of how the phosphorylation status on the C-terminal tyrosine cluster of BY kinases affects the oligomerization state of the protein, which is likely the machinery of polysaccharide export regulation. In summary, this research makes a substantial contribution to the rapidly progressing research of bacterial tyrosine kinases.
Resumo:
Antifreeze proteins (AFPs) protect marine teleosts from freezing in icy seawater by binding to nascent ice crystals and preventing their growth. It has been suggested that the gene dosage for AFPs in fish reflects the degree of exposure to harsh winter climates. The starry flounder, _Platichthys stellatus_, has been chosen to examine this relationship because it inhabits a range of the Pacific coast from California to the Arctic. This flatfish is presumed to produce type I AFP, which is an alanine-rich, amphipathic alpha-helix. Genomic DNA from four starry flounder was Southern blotted and probed with a cDNA of a winter flounder liver AFP. The hybridization signal was consistent with a gene family of approximately 40 copies. Blots of DNA from other starry flounder indicate that California fish have far fewer gene copies whereas Alaska fish have far more. This analysis is complicated by the fact that there are three different type I AFP isoforms. The first is expressed in the liver and secreted into circulation, the second is a larger hyperactive dimer also thought to be expressed in the liver, and the third is expressed in peripheral tissues. To evaluate the contribution of these latter two isoforms to the overall gene signal on Southern blots, hybridization probes for the three isoforms were isolated from starry flounder DNA by genomic cloning. Two clones revealed linkage of genes for different isoforms, and this was confirmed by genomic Southern blotting, where hybridization patterns indicated that the majority of genes were present in tandem repeats. The sequence and diversity of all three isoforms was sampled in the starry flounder genome by PCR. All coding sequences derived for the skin and liver isoforms were consistent with the proposed structure-function relationships for this AFP, where the flat hydrophobic side of the helix is conserved for ice binding. There was greater sequence diversity in the skin and hyperactive isoforms than in the liver isoform, suggesting that the latter evolved recently from one of the other two. The genomic PCR primers are currently being used to sample isoform diversity in related right-eyed flounders to test this hypothesis.
Resumo:
Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.
Resumo:
Antifreeze proteins (AFPs) are produced by a variety of organisms to either protect them from freezing or help them tolerate being frozen. Recent structural work has shown that AFPs bind to ice using ordered surface waters on a particular surface of the protein called the ice-binding site (IBS). These 'anchored clathrate' waters fuse to particular planes of an ice crystal and hence irreversibly bind the AFP to its ligand. An AFP isolated from the perennial ryegrass, Lolium perenne (LpAFP) was previously modelled as a right-handed beta helix with two proposed IBSs. Steric mutagenesis, where small side chains were replaced with larger ones, determined that only one of the putative IBSs was responsible for binding ice. The mutagenesis work also partly validated the fold of the computer-generated model of this AFP. In order to determine the structure of the protein, LpAFP was crystallized and solved to 1.4 Å resolution. The protein folds as an untwisted left-handed beta-helix, of opposite handedness to the model. The IBS identified by mutagenesis is remarkably flat, but less regular than the IBS of most other AFPs. Furthermore, several of the residues constituting the IBS are in multiple conformations. This irregularity may explain why LpAFP causes less thermal hysteresis than many other AFPs. Its imperfect IBS is also argued to be responsible for LpAFP's heightened ice-recrystallization inhibition activity. The structure of LpAFP is the first for a plant AFP and for a protein responsible for providing freeze tolerance rather than freeze resistance. To help understand what constitutes an IBS, a non-ice-binding homologue of type III AFP, sialic acid synthase (SAS), was engineered for ice binding. Point mutations were made to the germinal IBS of SAS to mimic key features seen in type III AFP. The crystal structures of some of the mutant proteins showed that the potential IBS became less charged and flatter as the mutations progressed, and ice affinity was gained. This proof-of-principle study highlights some of the difficulties in AFP engineering.
Resumo:
Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration indicated that the protein exists in solution predominantly as a tetramer. The PPH pH rate profile indicates maximal activity over a broad pH range.The steady-state kinetic constants determined for a rapid equilibrium ordered kinetic mechanism with Mg+2 binding first (Kd =140 ± 40 M), are kcat = 105 ± 2 s-1 and P-pyr Km = 5 ± 1 M. PEP (slow substrate kcat = 2 × 10-4 s-1), oxalate, and sulfopyruvate are competitive inhibitors with Ki values of 2.0 ± 0.1 mM, 17 ± 1 M, and 210 ± 10 M, respectively. Three PPH crystal structures have been determined, that of a ligand-free enzyme, the enzyme bound to Mg2+ and oxalate (inhibitor), and the enzyme bound to Mg2+ and P-pyr (substrate). The complex with the inhibitor was obtained by cocrystallization, whereas that with the substrate was obtained by briefly soaking crystals of the ligand-free enzyme with P-pyr prior to flash cooling. The PPH structure resembles that of the other members of the PEPM/ICL superfamily and is most similar to the functionally related enzyme, PEPM. Each monomer of the dimer of dimers exhibits an (/)8 barrel fold with the eighth helix swapped between two molecules of the dimer. Both P-pyr and oxalate are anchored to the active site by Mg2+. The loop capping the active site is disordered in all three structures, in contrast to PEPM, where the equivalent loop adopts an open or disordered conformation in the unbound state but sequesters the inhibitor from solvent in the bound state. Crystal packing may have favored the open conformation of PPH even when the enzyme was cocrystallized with the oxalate inhibitor. Structure alignment of PPH with other superfamily members revealed two pairs of invariant or conservatively replaced residues that anchor the flexible gating loop. The proposed PPH catalytic mechanism is analogous to that of PEPM but includes activation of a water nucleophile with the loop Thr118 residue.
Resumo:
The 67LR (67 kDa laminin receptor) is a cell-surface receptor with high affinity for its primary ligand. Its role as a laminin receptor makes it an important molecule both in cell adhesion to the basement membrane and in signalling transduction following this binding event. The protein also plays critical roles in the metastasis of tumour cells. Isolation of the protein from either normal or cancerous cells results in a product with an approx. molecular mass of 67 kDa. This protein is believed to be derived from a smaller precursor, the 37LRP (37 kDa laminin receptor precursor). However, the precise mechanism by which cytoplasmic 37LRP becomes cell-membrane-embedded 67LR is unclear. The process may involve post-translational fatty acylation of the protein combined with either homo- or hetero-dimerization, possibly with a galectin-3-epitope-containing partner. Furthermore, it has become clear that acting as a receptor for laminin is not the only function of this protein. 67LR also acts as a receptor for viruses, such as Sindbis virus and dengue virus, and is involved with internalization of the prion protein. Interestingly, unmodified 37LRP is a ribosomal component and homologues of this protein are found in all five kingdoms. In addition, it appears to be strongly associated with histones in the eukaryotic cell nucleus, although the precise role of these interactions is not clear. Here we review the current understanding of the structure and function of this molecule, as well as highlighting areas requiring further research.
Resumo:
Developing effective treatments for neurodegenerative diseases is one of the greatest medical challenges of the 21st century. Although many of these clinical entities have been recognized for more than a hundred years, it is only during the past twenty years that the molecular events that precipitate disease have begun to be understood. Protein aggregation is a common feature of many neurodegenerative diseases, and it is assumed that the aggregation process plays a central role in pathogenesis. In this process, one molecule (monomer) of a soluble protein interacts with other monomers of the same protein to form dimers, oligomers, and polymers. Conformation changes in three-dimensional structure of the protein, especially the formation of beta-strands, often accompany the process. Eventually, as the size of the aggregates increases, they may precipitate as insoluble amyloid fibrils, in which the structure is stabilized by the beta-strands interacting within a beta-sheet. In this review, we discuss this theme as it relates to the two most common neurodegenerative conditions-Alzheimer's and Parkinson's diseases.
Resumo:
Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus replication. We show here, by confocal immunofluorescence and electron microscopy, that the changes in morphology of FMDV-infected cells involve changes in the distribution of microtubule and intermediate filament components during infection. Despite the continued presence of centrosomes in infected cells, there is a loss of tethering of microtubules to the microtubule organizing center (MTOC) region. Loss of labeling for -tubulin, but not pericentrin, from the MTOC suggests a targeting of -tubulin (or associated proteins) rather than a total breakdown in MTOC structure. The identity of the FMDV protein(s) responsible was determined by the expression of individual viral nonstructural proteins and their precursors in uninfected cells. We report that the only viral nonstructural protein able to reproduce the loss of -tubulin from the MTOC and the loss of integrity of the microtubule system is FMDV 3Cpro. In contrast, infection of cells with another picornavirus, bovine enterovirus, did not affect -tubulin distribution, and the microtubule network remained relatively unaffected.
Resumo:
The role of rhodopsin as a structural prototype for the study of the whole superfamily of G protein-coupled receptors (GPCRs) is reviewed in an historical perspective. Discovered at the end of the nineteenth century, fully sequenced since the early 1980s, and with direct three-dimensional information available since the 1990s, rhodopsin has served as a platform to gather indirect information on the structure of the other superfamily members. Recent breakthroughs have elicited the solution of the structures of additional receptors, namely the beta 1- and beta 2-adrenergic receptors and the A(2A) adenosine receptor, now providing an opportunity to gauge the accuracy of homology modeling and molecular docking techniques and to perfect the computational protocol. Notably, in coordination with the solution of the structure of the A(2A) adenosine receptor, the first "critical assessment of GPCR structural modeling and docking" has been organized, the results of which highlighted that the construction of accurate models, although challenging, is certainly achievable. The docking of the ligands and the scoring of the poses clearly emerged as the most difficult components. A further goal in the field is certainly to derive the structure of receptors in their signaling state, possibly in complex with agonists. These advances, coupled with the introduction of more sophisticated modeling algorithms and the increase in computer power, raise the expectation for a substantial boost of the robustness and accuracy of computer-aided drug discovery techniques in the coming years.
Resumo:
G protein-coupled receptors (GPCRs) represent a major focus in functional genomics programs and drug development research, but their important potential as drug targets contrasts with the still limited data available concerning their activation mechanism. Here, we investigated the activation mechanism of the cholecystokinin-2 receptor (CCK2R). The three-dimensional structure of inactive CCK2R was homology-modeled on the basis of crystal coordinates of inactive rhodopsin. Starting from the inactive CCK2R modeled structure, active CCK2R (namely cholecystokinin-occupied CCK2R) was modeled by means of steered molecular dynamics in a lipid bilayer and by using available data from other GPCRs, including rhodopsin. By comparing the modeled structures of the inactive and active CCK2R, we identified changes in the relative position of helices and networks of interacting residues, which were expected to stabilize either the active or inactive states of CCK2R. Using targeted molecular dynamics simulations capable of converting CCK2R from the inactive to the active state, we delineated structural changes at the atomic level. The activation mechanism involved significant movements of helices VI and V, a slight movement of helices IV and VII, and changes in the position of critical residues within or near the binding site. The mutation of key amino acids yielded inactive or constitutively active CCK2R mutants, supporting this proposed mechanism. Such progress in the refinement of the CCK2R binding site structure and in knowledge of CCK2R activation mechanisms will enable target-based optimization of nonpeptide ligands.
Resumo:
Marijuana smokers and animals treated with ?9-tetrahydrocannabinol, THC, the principal component of marijuana, show alterations of sperm morphology suggesting a role for cannabinoids in sperm differentiation and/or maturation. Since the cannabinoid receptor 1 (CNR1) activation appears to play a pivotal role in spermiogenesis, the developmental stage where DNA is remodeled, we hypothesized that CNR1 receptors might also influence chromatin quality in sperm. We used Cnr1 null mutant (Cnr1-/-) mice to study the possible role of endocannabinoids on sperm chromatin during spermiogenesis. We demonstrated that CNR1 activation regulated chromatin remodeling of spermatids by either increasing Tnp2 levels or enhancing histone displacement. Comparative analysis of WT, Cnr1+/- and Cnr1-/- animals suggested the possible occurrence of haploinsufficiency for Tnp2 turnover control by CNR1, while histone displacement was disrupted to a lesser extent. Further, flow cytometry analysis demonstrated that the genetic loss of Cnr1 decreased sperm chromatin quality and was associated with sperm DNA fragmentation. This damage increased during epididymal transit, from caput to cauda. Collectively, our results show that the expression/activity of CNR1 controls the physiological alterations of DNA structure during spermiogenic maturation and epididymal transit. Given the deleterious effects of sperm DNA damage on male fertility, we suggest that the reproductive function of marijuana users may also be impaired by deregulation of the endogenous endocannabinoid system.
Resumo:
Background: Pea encodes eukaryotic translation initiation factor eIF4E (eIF4E(S)), which supports the multiplication of Pea seed-borne mosaic virus (PSbMV). In common with hosts for other potyviruses, some pea lines contain a recessive allele (sbm1) encoding a mutant eIF4E (eIF4E(R)) that fails to interact functionally with the PSbMV avirulence protein, VPg, giving genetic resistance to infection.
Resumo:
The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to > 100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.