893 resultados para PRL PULSES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

阐述了频率分辨光学开关法测量飞秒脉冲的原理,详细分析了模式尺寸效应和非线性效应对飞秒脉冲测量的影响。构建了一台用于飞秒脉冲测量的二次谐波-频率分辨光学开关装置,利用该装置对谐振腔输出的飞秒脉冲及压缩后的脉冲进行了测量。得到了飞秒脉冲的时间宽度及光谱宽度、电场及其相位在时域和频域的详细信息。谐振腔直接输出脉冲的时间宽度为56 fs,光谱宽度为27 nm,时间带宽积为0.686,算法中的最小误差为0.001792。脉冲压缩后的测量结果为27 fs,光谱宽度为92 nm,时间带宽积为1.27,算法误差为0.00

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用飞秒激光振荡器产生的脉冲对镀有铬层的玻璃和石英基片进行微加工,发现两种样品表面均有波纹状的微突起结构产生。这些微突起结构离开样品表面的高度为10~300 nm不等,并且随着激光功率的增大而增加,在一定功率下达到饱和状态。它们的形貌、尺寸和高度取决于入射飞秒激光的能流以及飞秒脉冲的参数。通过化学方法证明了这些微突起结构是由玻璃和石英的主要成分SiO2组成的,并非样品表面的铬元素。此外,通过选取适当的飞秒激光功率和样品加工速度,制作了两种不同周期和线宽的光栅结构,显示出飞秒激光振荡器良好的加工性能。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用反射式达曼光栅对飞秒激光进行分束,可以避免材料色散的影响。搭建了利用反射式1×2达曼光栅为基础的频率分辨光学开关(FROG)装置,并把测量结果与传统多发频率分辨光学开关装置的测量结果进行了对比。理论和实验结果表明,当输入脉冲宽度大于50 fs时,用达曼光栅作为分光器和使用分光镜分光的效果是一样的;当输入脉冲的宽度小于50 fs时,用达曼光栅作为分光器引入的展宽量明显小于分光镜引入的展宽量,尤其是当输入脉冲的宽度小于20 fs时用达曼光栅作为分光器的效果更为突出。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用具有纳焦能量、高重复频率的偏振光飞秒双脉冲对金属铬膜样品进行微加工,样品表面都会产生微突起状结构,它们的宽度在0~400 ps的双脉冲时延范围内没有明显的变化,但高度却都在1~10 ps的双脉冲时延范围内呈现明显的下降,在此时延范围之外并没有明显的变化。通过加工样品的扫描电子显微镜(SEM)图片发现,对于偏振光,利用双脉冲方法,可以获得更好的加工质量。并且线偏振光得到的微突起状结构比较细长,在入射光束的偏振方向上有所伸长;圆偏振光得到的微突起状结构比较接近圆形。即在低脉冲能量、高重复频率情况下,具体的微加工特征形貌与入射光束的偏振状态有关。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a miniature pulse compressor that can be used to compensate the group velocity dispersion that is produced by a commercial femtosecond laser cavity. The compressor is composed of two identical highly efficient deep-etched transmissive gratings. Compared with prism pairs, highly efficient deep-etched transmissive grating pairs are lightweight and small. With an optimized groove depth and a duty cycle, 98% diffraction efficiency of the -1 transmissive order can be achieved at a wavelength of 800 nm under Littrow conditions. The deep-etched gratings are fabricated in fused silica by inductively coupled plasma etching. With a pair of the fabricated gratings, the input positively chirped 73.9 fs pulses are neatly compressed into the nearly Fourier transform-limited 43.2 fs pulses. The miniature deep-etched grating-based pulse compressor should be of interest for practical applications. (c) 2008 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

我们提出了一种新颖的利用脉冲重复率倍增和时域泰伯效应实现毫米波脉冲信号产生的光学方法。在我们的方案中,一个级联的马赫振德干涉仪被用来实现脉冲重复率倍增,一个线性的啁啾光纤光栅被用来实现时域泰伯效应。文中对这种方法的基本理论进行了分析,并给出了相应的数值模拟的结果。研究结果显示这种灵活的毫米波脉冲信号产生的方案在未来的宽带的Radio over Fiber技术将有一个很好的潜在的应用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Talbot effect of a high-density grating under femtosecond laser illumination is analyzed with rigorous electromagnetic theory which is based on the Fourier decomposition and the rigorous coupled-wave analysis (RCWA). Numerical simulations show that the contrast of the Talbot images steadily decreases as the transmitted femtosecond laser pulses propagate forward and with wider spectrum width of the femtosecond laser pulses. The Talbot images of high-density gratings have much higher sensitivity of the spectrum widths of the incident laser pulses than those of the traditional low-density gratings. In experiments, the spectrums and the pulse widths of the incident pulses are measured with a frequency-resolved optical grating (FROG) apparatus. The Talbot images are detected by using a Talbot scanning near-field optical microscopy (Talbot-SNOM) technique, which are in coincidence with the numerical simulations. This effect should be useful for developing new femtosecond laser techniques and devices. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hair cells from the bull frog's sacculus, a vestibular organ responding to substrate-borne vibration, possess electrically resonant membrane properties which maximize the sensitivity of each cell to a particular frequency of mechanical input. The electrical resonance of these cells and its underlying ionic basis were studied by applying gigohm-seal recording techniques to solitary hair cells enzymatically dissociated from the sacculus. The contribution of electrical resonance to frequency selectivity was assessed from microelectrode recordings from hair cells in an excised preparation of the sacculus.

Electrical resonance in the hair cell is demonstrated by damped membrane-potential oscillations in response to extrinsic current pulses applied through the recording pipette. This response is analyzed as that of a damped harmonic oscillator. Oscillation frequency rises with membrane depolarization, from 80-160 Hz at resting potential to asymptotic values of 200-250 Hz. The sharpness of electrical tuning, denoted by the electrical quality factor, Qe, is a bell-shaped function of membrane voltage, reaching a maximum value around eight at a membrane potential slightly positive to the resting potential.

In whole cells, three time-variant ionic currents are activated at voltages more positive than -60 to -50 mV; these are identified as a voltage-dependent, non-inactivating Ca current (Ica), a voltage-dependent, transient K current (Ia), and a Ca-dependent K current (Ic). The C channel is identified in excised, inside-out membrane patches on the basis of its large conductance (130-200 pS), its selective permeability to Kover Na or Cl, and its activation by internal Ca ions and membrane depolarization. Analysis of open- and closed-lifetime distributions suggests that the C channel can assume at least two open and three closed kinetic states.

Exposing hair cells to external solutions that inhibit the Ca or C conductances degrades the electrical resonance properties measured under current-clamp conditions, while blocking the A conductance has no significant effect, providing evidence that only the Ca and C conductances participate in the resonance mechanism. To test the sufficiency of these two conductances to account for electrical resonance, a mathematical model is developed that describes Ica, Ic, and intracellular Ca concentration during voltage-clamp steps. Ica activation is approximated by a third-order Hodgkin-Huxley kinetic scheme. Ca entering the cell is assumed to be confined to a small submembrane compartment which contains an excess of Ca buffer; Ca leaves this space with first-order kinetics. The Ca- and voltage-dependent activation of C channels is described by a five-state kinetic scheme suggested by the results of single-channel observations. Parameter values in the model are adjusted to fit the waveforms of Ica and Ic evoked by a series of voltage-clamp steps in a single cell. Having been thus constrained, the model correctly predicts the character of voltage oscillations produced by current-clamp steps, including the dependencies of oscillation frequency and Qe on membrane voltage. The model shows quantitatively how the Ca and C conductances interact, via changes in intracellular Ca concentration, to produce electrical resonance in a vertebrate hair cell.