888 resultados para POLYSTYRENE FOAMS
Resumo:
A fast flotation assay was used to select new floating yeast strains. The flotation ability did not seem to be directly correlated to total extracellular protein concentration of the culture. However, the hydrophobicity of the cell was definitely correlated to the flotation capacity. The Saccharomyces strains (FLT strains) were highly hydrophobic and showed an excellent flotation performance in batch cultures without additives (flotation agents) and with no need for a special flotation chamber or flotation column. A stable and well-organized structure was evident in the dried foam as shown by scanning electron microscopy which revealed its unique structure showing mummified cells (dehydrated) attached to each other. The attachment among the cells and the high protein concentration of the foams indicated that proteins might be involved in the foam formation. The floating strains (strains FLT) which were not flocculent and showed no tendency to aggregate, were capable of growing and producing ethanol in a synthetic medium containing high glucose concentration as a carbon source. The phenomenon responsible for flotation seems to be quite different from the flocculation phenomenon. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Flotation or cell recovery in foams (proportion of the total cells in the medium transferred to the foam) and flotation efficiency (proportion of the cells transferred from an initial volume of medium equal to the residual volume after flotation) are functions of time, aeration rate, initial volume of medium, and initial concentration of cells. Cell recovery reached constant values (around 96.4 +/- 6.3%) and flotation efficiency decreased (owing to increases in the liquid content of the foam), with increases in air how rate (above 6-7 ml air s(-1)) and volumes of medium (above 11 ml) added to the column. Increases in concentration of cells in the medium led to increases in the concentration of cells in the foam.
Resumo:
In this work, siloxane-poly(propylene oxide) discs (PPO disc) prepared using the sol-gel process were used as solid phase in enzyme-linked immunosorbent assays (ELISA) for the detection of anti-hepatitis C virus (HCV) antibodies. The HCV RNA from serum (genotype 1b) was submitted to the RT-PCR technique and subsequent amplification of the HCV core 408 pb. This fragment was cloned into expression vector pET42a and expressed in Escherichia coli as recombinant protein with glutathione S-transferase (GST). Cell cultures were grown and induced having a final concentration of 0.4 x 10(-3) mol L-1 of IPTG. After induction, the cells were harvested and the soluble fraction was analyzed using polyacrilamide gel 15% showing a band with an approximate molecular weight of 44 kDa, the expected size for this GST-fused recombinant protein. The recombinant protein was purified and continued by immunological detection using HCV-positive serum and showed no cross-reactivity with positive samples for other infectious diseases. An ELISA was established using 1.25 ng of recombinant protein per PPO disc, a dilution of 1: 10,000 and 1:40 for a peroxidase conjugate and serum, respectively, and solutions of hydrogen peroxide and 3,3',5,5'-tetra-methylbenzidine in a ratio of 1: 1. The proposed methodology was compared with the ELISA conventional polystyrene-plate procedure and the performance of the PPO discs as a matrix for immunodetection gave an easy synthesis, good performance and reproducibility for commercial application. (c) 2007 Elsevier B.V. All rights reserved.