932 resultados para POLYMORPHISM
Resumo:
Most genome-wide association studies to date have been performed in populations of European descent, but there is increasing interest in expanding these studies to other populations. The performance of genotyping chips in Asian populations is not well established. Therefore, we sought to test the performance of widely used fixed-marker, genome-wide association studies chips in the Han Chinese population. Non-HapMap Chinese samples (n = 396) were genotyped using the Illumina OmniExpress and Affymetrix 6.0 platforms, whereas a subset also were genotyped using the Immunochip. Genotyped markers from the Affymetrix 6.0 and Illumina OmniExpress were used for full genome imputation based on the HapMap 2 JPT+CHB (Japanese from Tokyo, Japan and Chinese from Beijing, China) reference panel. The concordance between markers genotypes for the three platforms was very high whether directly genotyped or genotyped and imputed single nucleotide polymorphisms (SNPs; .99.8% for directly genotyped and .99.5% for genotyped and imputed SNPs, respectively) were compared. The OmniExpress chip data enabled more SNPs to be imputed, particularly SNPs with minor allele frequency .5%. The OmniExpress chip achieved better coverage of HapMap SNPs than the Affymetrix 6.0 chip (73.6% vs. 65.9%, respectively, for minor allele frequency .5%). The Affymetrix 6.0 and Illumina OmniExpress chip have similar genotyping accuracy and provide similar accuracy of imputed SNPs. The OmniExpress chip however provides better coverage of Asian HapMap SNPs, although its coverage of HapMap SNPs is moderate. © 2013 Jiang et al.
Resumo:
To identify susceptibility loci for visceral leishmaniasis, we undertook genome-wide association studies in two populations: 989 cases and 1,089 controls from India and 357 cases in 308 Brazilian families (1,970 individuals). The HLA-DRB1-HLA-DQA1 locus was the only region to show strong evidence of association in both populations. Replication at this region was undertaken in a second Indian population comprising 941 cases and 990 controls, and combined analysis across the three cohorts for rs9271858 at this locus showed P combined = 2.76 × 10 -17 and odds ratio (OR) = 1.41, 95% confidence interval (CI) = 1.30-1.52. A conditional analysis provided evidence for multiple associations within the HLA-DRB1-HLA-DQA1 region, and a model in which risk differed between three groups of haplotypes better explained the signal and was significant in the Indian discovery and replication cohorts. In conclusion, the HLA-DRB1-HLA-DQA1 HLA class II region contributes to visceral leishmaniasis susceptibility in India and Brazil, suggesting shared genetic risk factors for visceral leishmaniasis that cross the epidemiological divides of geography and parasite species. © 2013 Nature America, Inc. All rights reserved.
Resumo:
Genome-wide association studies (GWAS) are a powerful hypothesis-free tool for the dissection of susceptibility to common heritable human diseases, including osteoporosis. To date, more than 2000 loci for common human diseases have been identified by GWAS. Success using the GWAS model depends on genetic risk being determined by shared stretches of DNA carried with different frequencies in cases and controls, inherited from ancient ancestors, termed the “common disease–common variant” hypothesis. Not all disease risk is caused by common variants, however, and thus GWAS will not detect all variants involved. Successful GWAS performance requires careful quality control, especially as the effect sizes under study are modest, and there are multiple potential sources of error. Conservative interpretation, use of stringent significance thresholds, and replication in independent cohorts are required to ensure results are robust. Despite these challenging parameters, much has been learnt from GWAS and, as the approach matures and is modified to identify a wider range of variants, significantly more will be learnt about the etiopathogenesis of common diseases such as osteoporosis.
Resumo:
Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis-associated haplotypes at 11 loci. Two ankylosing spondylitis-associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.
Resumo:
Copy number variations (CNVs) as described in the healthy population are purported to contribute significantly to genetic heterogeneity. Recent studies have described CNVs using lymphoblastoid cell lines or by application of specifically developed algorithms to interrogate previously described data. However, the full extent of CNVs remains unclear. Using high-density SNP array, we have undertaken a comprehensive investigation of chromosome 18 for CNV discovery and characterisation of distribution and association with chromosome architecture. We identified 399 CNVs, of which loss represents 98%, 58% are less than 2.5 kb in size and 71% are intergenic. Intronic deletions account for the majority of copy number changes with gene involvement. Furthermore, one-third of CNVs do not have putative breakpoints within repetitive sequences. We conclude that replicative processes, mediated either by repetitive elements or microhomology, account for the majority of CNVs in the healthy population. Genomic instability involving the formation of a non-B structure is demonstrated in one region.
Resumo:
Background: The genetic basis for developing asthma has been extensively studied. However, association studies to date have mostly focused on mild to moderate disease and genetic risk factors for severe asthma remain unclear. Objective: To identify common genetic variants affecting susceptibility to severe asthma. Methods: A genome-wide association study was undertaken in 933 European ancestry individuals with severe asthma based on Global Initiative for Asthma (GINA) criteria 3 or above and 3346 clean controls. After standard quality control measures, the association of 480 889 genotyped single nucleotide polymorphisms (SNPs) was tested. To improve the resolution of the association signals identified, non-genotyped SNPs were imputed in these regions using a dense reference panel of SNP genotypes from the 1000 Genomes Project. Then replication of SNPs of interest was undertaken in a further 231 cases and 1345 controls and a meta-analysis was performed to combine the results across studies. Results: An association was confirmed in subjects with severe asthma of loci previously identified for association with mild to moderate asthma. The strongest evidence was seen for the ORMDL3/GSDMB locus on chromosome 17q12-21 (rs4794820, p=1.03×10 (-8)following meta-analysis) meeting genome-wide significance. Strong evidence was also found for the IL1RL1/IL18R1 locus on 2q12 (rs9807989, p=5.59×10 (-8) following meta-analysis) just below this threshold. No novel loci for susceptibility to severe asthma met strict criteria for genome-wide significance. Conclusions: The largest genome-wide association study of severe asthma to date was carried out and strong evidence found for the association of two previously identified asthma susceptibility loci in patients with severe disease. A number of novel regions with suggestive evidence were also identified warranting further study.
Resumo:
To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36 the number associated with psoriasis in European individuals. We also identified, using conditional analyses, five independent signals within previously known loci. The newly identified loci shared with other autoimmune diseases include candidate genes with roles in regulating T-cell function (such as RUNX3, TAGAP and STAT3). Notably, they included candidate genes whose products are involved in innate host defense, including interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C) and nuclear factor (NF)-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense. © 2012 Nature America, Inc. All rights reserved.
Resumo:
Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (P combined = 4.09 × 10-9; odds ratio (OR) = 1.21, 95% confidence interval (CI) =1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (P combined = 2.74 × 10-10; OR = 1.14, 95% CI = 1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus. © 2012 Nature America, Inc. All rights reserved.
Resumo:
Background and aims. Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts eventually leading to biliary cirrhosis. Recent genetic studies in PSC have identified associations at 2q13, 2q35, 3p21, 4q27, 13q31 and suggestive association at 10p15. The aim of this study was to further characterize and refine the genetic architecture of PSC. Methods. We analyzed previously reported associated SNPs at four of these non-HLA loci and 59 SNPs tagging the IL-2/IL-21 (4q27) and IL2RA (10p15) loci in 992 UK PSC cases and 5162 healthy UK controls. Results. The most associated SNPs identified were rs3197999 (3p21 (MST1), p = 1.9 × 10 -6, OR A vs G = 1.28, 95% CI (1.16-1.42)); rs4147359 (10p15 (IL2RA), p = 2.6 × 10 -4, OR A vs G = 1.20, 95% CI (1.09-1.33)) and rs12511287 (4q27 (IL-2/IL-21), p = 3.0 × 10 -4, OR A vs T = 1.21, 95% CI (1.09-1.35)). In addition, we performed a meta-analysis for selected SNPs using published summary statistics from recent studies. We observed genome-wide significance for rs3197999 (3p21 (MST1), P combined = 3.8 × 10 -12) and rs4147359 (10p15 (IL2RA), P combined = 1.5 × 10 -8). Conclusion. We have for the first time confirmed the association of PSC with genetic variants at 10p15 (IL2RA) locus at genome-wide significance and replicated the associations at MST1 and IL-2/IL-21 loci in a large homogeneous UK population. These results strongly implicate the role of IL-2/IL2RA pathway in PSC and provide further confirmation of MST1 association. © Informa Healthcare.
Resumo:
Ankylosing spondylitis (AS) and spondyloarthritis are strongly genetically determined. The long-standing association with HLA-B27 is well described, although the mechanism by which that association induces AS remains uncertain. Recent developments include the description of HLA-B27 tag single nucleotide polymorphisms in European and Asian populations. An increasing number of non-MHC genetic associations have been reported, which provided amongst other things the first evidence of the involvement of the IL-23 pathway in AS. The association with ERAP1 is now known to be restricted to HLA-B27 positive disease. Preliminary studies on the genetics of axial spondyloarthritis demonstrate a lower HLA-B27 carriage rate compared with AS. Studies with larger samples and including non-European ethnic groups are likely to further advance the understanding of the genetics of AS and spondyloarthritis. © 2012.
Resumo:
Objective. Unconfirmed reports describe association of ankylosing spondylitis (AS) with several candidate genes including ANKH. Cellular export of inorganic pyrophosphate is regulated by the ANK protein, and mutant mice (ank/ank), which have a premature stop codon in the 3′ end of the ank gene, develop severe ankylosis. We tested the association between single-nucleotide polymorphisms (SNP) in these genes and susceptibility to AS in a population of patients with AS. We investigated the role of these genes in terms of functional (BASFI) and metrological (BASMI) measures, and the association with radiological severity (mSASSS). Methods. Our study was conducted on 355 patients with AS and 95 ethnically matched healthy controls. AS was defined according to the modified New York criteria. Four SNP in ANKH (rs27356, rs26307, rs25957, and rs28006) were genotyped. Association analysis was performed using Cochrane-Armitage and linear regression tests for dichotomous and quantitative variables. Analyses of Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), BASFI, and mSASSS were controlled for sex and disease duration. Results. None of the 4 markers showed significant single-locus disease associations (p > 0.05), suggesting that ANKH was not a major determinant of AS susceptibility in our population. No association was observed between these SNP and age at symptom onset, BASDAI, BASFI, BASMI, or mSASSS. Conclusion. These results confirm data in white Europeans that ANKH is probably not a major determinant of susceptibility to AS. ANKH polymorphisms do not markedly influence AS disease severity, as measured by BASMI and mSASSS. The Journal of Rheumatology
Resumo:
Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide polymorphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation associated with common traits remains unaccounted for within the genome. Genome-wide complex trait analysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of complex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in order to examine the missing heritability present in Parkinson's disease (PD). We meta-analyzed our initial results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI 17-38, P = 8.08E - 08) phenotypic variance associated with all types of PD, 15% (95% CI -0.2 to 33, P = 0.09) phenotypic variance associated with early-onset PD and 31% (95% CI 17-44, P = 1.34E - 05) phenotypic variance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our results suggest that although GWASs are a useful tool in identifying the most common variants associated with complex disease, a great deal of common variants of small effect remain to be discovered. © Published by Oxford University Press 2012.
Resumo:
This report describes a 32-year-old woman presenting since childhood with progressive calcium pyrophosphate disease (CPPD), characterized by severe arthropathy and chondrocalcinosis involving multiple peripheral joints and intervertebral disks. Because ANKH mutations have been previously described in familial CPPD, the proband's DNA was assessed at this locus by direct sequencing of promoter and coding regions and revealed 3 sequence variants in ANKH. Sequences of exon 1 revealed a novel isolated nonsynonymous mutation (c.13 C>T), altering amino acid in codon 5 from proline to serine (CCG>TCG). Sequencing of parental DNA revealed an identical mutation in the proband's father but not the mother. Subsequent clinical evaluation demonstrated extensive chondrocalcinosis and degenerative arthropathy in the proband's father. In summary, we report a novel mutation, not previously described, in ANKH exon 1, wherein serine replaces proline, in a case of early-onset severe CPPD associated with metabolic abnormalities, with similar findings in the proband's father.
Resumo:
Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimer's disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10 -7. In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10 -11) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10 -11). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10 -7) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10 -7); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia.
Resumo:
Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We report a genome-wide association study for glycemic response to metformin in 1,024 Scottish individuals with type 2 diabetes with replication in two cohorts including 1,783 Scottish individuals and 1,113 individuals from the UK Prospective Diabetes Study. In a combined meta-analysis, we identified a SNP, rs11212617, associated with treatment success (n = 3,920, P = 2.9 P×-9, odds ratio = 1.35, 95% CI 1.22-1.49) at a locus containing ATM, the ataxia telangiectasia mutated gene. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMP-activated protein kinase in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMP-activated protein kinase, and variation in this gene alters glycemic response to metformin. © 2011 Nature America, Inc. All rights reserved.