944 resultados para POLY(ETHYLENE OXIDE) COMPLEXES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An extended Goldman-Shen pulse sequence was used to observe indirectly the proton spin diffusion in the blends of polystyrene (PS) with poly(2,6-dimethyl-1,4-phenylene oxides) (PPO). The results indicate that the average distance between PS and PPO is less than 5 angstrom in the intimately mixed phase, but there are heterogeneous domains on a 100-angstrom scale. The data of spin relaxation of carbons, T1(C), for homopolymers and their blends suggest that there is a strong pi-pi electron conjugation interaction between the aromatic rings of PS and those of PPO, while the aromatic rings of PPO drive the aromatic rings of PS to move cooperatively. It is the cooperative motion that markedly improves the impact strength of PS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coordination of olefins to square-planar Pd(II) and Pt(II) complexes containing 2,9-dimethylphenanthroline (L1) often involves a change of color associated with a change of geometry at the metal center. In order to obtain suitable colorimetric detectors for ethylene gas, a series of new Pd(II) and Pt(II) compounds with a range of 2,9-disubstituted phenanthroline ligands [2,9-di-n-butyl-1,10-phenanthroline (L-2), 2,9-di-s-butyl-1,10-phenanthroline (L3), 2,9-diphenyl-1,10-phenanthroline (L4), and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, L5)] have been prepared and their reactivity toward ethylene investigated both in solution and after depositing the detector compounds on a variety of solid supports. The Pd(II) complex [PdCl2(L2)] supported on silica undergoes a clear color change upon exposure to ethylene, while remaining stable toward air and water, and forms the basis for new simple colorimetric detectors with potential applications in ethylene pipe-leak detection and the monitoring of fruit ripening. Encouragingly, the detector is able to discriminate between fruit at different stages of ripening. The response of the detector to other volatiles was also examined, and specific color changes were also observed upon exposure to aromatic acetylenes. The crystal structures of four new derivatives, including the ethylene-Pt(II) complex [PtCl2(C2H4)(L2)], are also described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular mechanics calculations were done on tetrahedral phosphine oxide zinc complexes in simulated water, benzene and hexane phases using the DREIDING II force field in the BIOGRAF molecular modeling program. The SUN workstation computer (SUN_ 4c, with SPARK station 1 processor) was used for the calculations. Experimental structural information used in the parameterization was obtained from the September 1989 version of the Cambridge Structural Database. 2 Steric and solvation energies were calculated for complexes of the type ZnCl2 (RlO)2' The calculations were done with and without inclusion of electrostatic interactions. More reliable simulation results were obtained without inclusion of charges. In the simulated gas phase, the steric energies increase regularly with number of carbons in the alkyl group, whereas they go through a maximum when solvent shells are included in the calculation. Simulated distribution ratios vary with chain length and type of chain branching and the complexes are found to be more favourable for extraction by benzene than by hexane, in accord with experimental data. Also, in line with what would be expected for a favorable extraction, calculations without electrostatics predict that the complexes are better solvated by the organic solvents than by water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Boron tribalide complexes of 1,1-bis(dimethylamino)ethylene (DME) , t etramethylurea (TMU), tetramethylguanidine (TMG) , and pentamethylguanidine (PMG) and also mixed boron t r ihalide adducts of DME have been investigated by 1H and 19F NMR spectroscopy. Both nitrogen and the C-Q-H carbon of DME are possible donor a toms to boron trihal ides but complexation has been found to occur only at carbon of DME. The initial adduct acts as a Bronsted acid and gives up a proton to free DME in solut ion. A side reaction in the DME-BF, system gives rise to trace amounts of a complex aSSigned as (DME)2BF2+. (DME)2BF2+ is produced in much larger quantities in t he DME-BF3-BC13 and DME-BF,-BBr, systems by reaction of free DME with DME:BF2X (X = Cl, Br). Restricted r otation about the C-N bonds of TMUlBC13 and n1U:BBr3 has been observed at low temperatures. This complements previous work in this system and confirms oxygen donation of TMU to boron trihalides . Restricted rotation at low temperatures also has been observed in DMEboron trihalide systems

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La chimie supramoléculaire est basée sur l'assemblage non covalent de blocs simples, des petites molécules aux polymères, pour synthétiser des matériaux fonctionnels ou complexes. La poly(4-vinylpyridine) (P4VP) est l'une des composantes supramoléculaires les plus utilisées en raison de sa chaîne latérale composée d’une pyridine pouvant interagir avec de nombreuses espèces, telles que les petites molécules monofonctionnelles et bifonctionnelles, grâce à divers types d'interactions. Dans cette thèse, des assemblages supramoléculaires de P4VP interagissant par liaisons hydrogène avec de petites molécules sont étudiés, en ayant comme objectifs de faciliter l'électrofilage de polymères et de mieux comprendre et d'optimiser la photoréponse des matériaux contenant des dérivés d'azobenzène. Une nouvelle approche est proposée afin d'élargir l'applicabilité de l'électrofilage, une technique courante pour produire des nanofibres. À cet effet, un complexe entre la P4VP et un agent de réticulation bifonctionnel capable de former deux liaisons hydrogène, le 4,4'-biphénol (BiOH), a été préparé pour faciliter le processus d’électrofilage des solutions de P4VP. Pour mieux comprendre ce complexe, une nouvelle méthode de spectroscopie infrarouge (IR) a d'abord été développée pour quantifier l'étendue de la complexation. Elle permet de déterminer un paramètre clé, le rapport du coefficient d'absorption d'une paire de bandes attribuées aux groupements pyridines libres et liées par liaisons hydrogène, en utilisant la 4-éthylpyridine comme composé modèle à l’état liquide. Cette méthode a été appliquée à de nombreux complexes de P4VP impliquant des liaisons hydrogène et devrait être généralement applicable à d'autres complexes polymères. La microscopie électronique à balayage (SEM) a révélé l'effet significatif du BiOH sur la facilité du processus d’électrofilage de P4VP de masses molaires élevées et faibles. La concentration minimale pour former des fibres présentant des perles diminue dans le N, N'-diméthylformamide (DMF) et diminue encore plus lorsque le nitrométhane, un mauvais solvant pour la P4VP et un non-solvant pour le BiOH, est ajouté pour diminuer l'effet de rupture des liaisons hydrogène causé par le DMF. Les liaisons hydrogène dans les solutions et les fibres de P4VP-BiOH ont été quantifiées par spectroscopie IR et les résultats de rhéologie ont démontré la capacité de points de réticulation effectifs, analogues aux enchevêtrements physiques, à augmenter la viscoélasticité de solutions de P4VP pour mieux résister à la formation de gouttelettes. Cette réticulation effective fonctionne en raison d'interactions entre le BiOH bifonctionnel et deux chaînes de P4VP, et entre les groupements hydroxyles du BiOH complexé de manière monofonctionnelle. Des études sur d’autres agents de réticulation de faible masse molaire ont montré que la plus forte réticulation effective est introduite par des groupes d’acide carboxylique et des ions de zinc (II) qui facilitent le processus d’électrofilage par rapport aux groupements hydroxyles du BiOH. De plus, la sublimation est efficace pour éliminer le BiOH contenu dans les fibres sans affecter leur morphologie, fournissant ainsi une méthode élégante pour préparer des fibres de polymères purs dont le processus d’électrofilage est habituellement difficile. Deux complexes entre la P4VP et des azobenzènes photoactifs portant le même groupement tête hydroxyle et différents groupes queue, soit cyano (ACN) ou hydrogène (AH), ont été étudiés par spectroscopie infrarouge d’absorbance structurale par modulation de la polarisation (PM-IRSAS) pour évaluer l'impact des groupements queue sur leur performance lors de l'irradiation avec de la lumière polarisée linéairement. Nous avons constaté que ACN mène à la photo-orientation des chaînes latérales de la P4VP et des azobenzènes, tandis que AH mène seulement à une orientation plus faible des chromophores. La photo-orientation des azobenzènes diminue pour les complexes avec une teneur croissante en chromophore, mais l'orientation de la P4VP augmente. D'autre part, l'orientation résiduelle après la relaxation thermique augmente avec la teneur en ACN, à la fois pour le ACN et la P4VP, mais la tendance opposée est constatée pour AH. Ces différences suggèrent que le moment dipolaire a un impact sur la diffusion rotationnelle des chromophores. Ces résultats contribueront à orienter la conception de matériaux polymères contenant des azobenzène efficaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol < ethanol < isopropanol < dioxane. The multilayered coatings were developed using layer-by-layer deposition of interpolymer complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reaction of VO(acac)(2) with the ONO-chelator obtained by the condensation of salicylaldehyde with 2-hydroxybenzoylhydrazine (H2L) in a monohydric alcohol. (ROH) medium produces VO(OR)L]-type oxidoalkoxido complexes (1-7) where R = Me, Pr-n, Pr-i, Bu-n, Bu-i, Bu-t and (n)Pen. All the complexes show the metal atom to have a five-coordinate square pyramidal environment, although in some complexes there is an additional weak V center dot center dot center dot O interaction in the sixth axial position. In acetonitrile medium and in the presence of a cis-diol (ethylene glycol), H2L reacts with VO(acac)(2) to form a six-coordinate complex, [VO(OCH2CH2OH)L] (8). When the reaction is carried out in acetonitrile medium in the presence of 2-amino ethanol, a completely different type of product containing the square pyramidal complex anion [VO2L](-) associated with the cation [NH3CH2CH2OH](+) is obtained. It was noted previously that on being reacted with monodentate nitrogen donor bases B (which are stronger than pyridine), the [VO(OR)L] complexes react to form the same complex anion [VO2L](-) associated with the corresponding cation [BH](+). The coordination environment around the V(V) acceptor center of the water soluble [BH](+)[VO2L](-)satisfies one of the several requirements for an efficient antidiabetic vanadium species such as water solubility, nature of donor atoms of the ligand and their disposition around the VO2+ acceptor center.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poly(acrylic acid) (PAA) and methylcellulose (MC) are able to form hydrogen-bonded interpolymer complexes (IPCs) in aqueous solutions. In this study, the complexation between PAA andMC is explored in dilute aqueous solutions under acidic conditions. The formation of stable nanoparticles is established,whose size and colloidal stability are greatly dependent on solution pH and polymers ratio in the mixture. Poly(acrylic acid) and methylcellulose are also used to prepare polymeric films by casting from aqueous solutions. It is established that uniform films can be prepared by casting from polymer mixture solutions at pH 3.4–4.5. At lower pHs (pH<3.0) the films have inhomogeneous morphology resulting from strong interpolymer complexation and precipitation of polycomplexes, whereas at higher pHs (pH 8.3) the polymers form fully immiscible blends because of the lack of interpolymer hydrogen-bonding. The PAA/MC films cast at pH 4 are shown to be non-irritant to mucosal surfaces. These films provide a platform for ocular formulation of riboflavin, a drug used for corneal crosslinking in the treatment of keratoconus. An in vitro release of riboflavin as well as an in vivo retention of the films on corneal surfaces can be controlled by adjusting PAA/MC ratio in the formulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanostructured complexes were prepared from poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) and poly(4-vinylphenol) (PVPh) in tetrahydrofuran (THF). The phase behavior, specific interactions, and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). In this A-b-B/C type block copolymer/homopolymer system, both blocks of the PCL-b-P2VP block copolymer have favorable intermolecular interaction toward PVPh via hydrogen bonding, but the interaction between P2VP block and PVPh is significantly stronger than that between PCL block and PVPh. It was found that the disparity in competitive intermolecular interactions, specifically PVPh and P2VP block interact strongly whereas PVPh and PCL block interact weakly, leads to the formation of a variety of nanostructures depending on PVPh concentration. Spherical micelles of 30−40 nm in diameter were obtained in the complex with 10 wt % PVPh, followed by wormlike micelles with size in the order of 40−50 nm in the complexes with 30−60 wt % PVPh. At low PVPh concentrations, PCL interacts weakly with PVPh, whereas in the complexes containing more than 20 wt % PVPh, the PCL block began to interact considerably with PVPh, leading to the formation of composition-dependent nanostructures. The complex becomes homogeneous with PVPh content beyond 60 wt %, since a sufficient amount of PVPh is available to form hydrogen bonds with both PCL and P2VP. Finally, a model was proposed to explain the self-assembly and microphase morphology of these complexes based on the experimental results obtained. The competitive hydrogen-bonding interactions cause the self-assembly and formation of different microphase morphologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanostructured poly(ε-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New polymer electrolytes were synthesized and characterized based on a new polymer host. The motivation was to produce a host polymer with a high dielectric constant which should reduce ion clustering with an attendant increased conductivity. The new polymer host, poly(diethylene glycol carbonate) and its sodium triflate complexes were characterized by thermal analysis and AC impedance measurements. The polycarbonate backbone appears less flexible than the polyether hosts as evidenced by the higher glass transition temperatures. The conductivity for the sodium triflate complexes was measured as ~ 10−5 S cm−1 at 55 °C and the dielectric constant of the host polymer was found to be 3.6 at 3 GHz. The low conductivity is attributed to rigidity of the polycarbonate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The [Fc[BOND]bis{ZnII(TACN)(Py)}] complex, comprising two ZnII(TACN) ligands (Fc=ferrocene; Py=pyrene; TACN=1,4,7-triazacyclononane) bearing fluorescent pyrene chromophores linked by an electrochemically active ferrocene molecule has been synthesised in high yield through a multistep procedure. In the absence of the polyphosphate guest molecules, very weak excimer emission was observed, indicating that the two pyrene-bearing ZnII(TACN) units are arranged in a trans-like configuration with respect to the ferrocene bridging unit. Binding of a variety of polyphosphate anionic guests (PPi and nucleotides di- and triphosphate) promotes the interaction between pyrene units and results in an enhancement in excimer emission. Investigations of phosphate binding by 31P NMR spectroscopy, fluorescence and electrochemical techniques confirmed a 1:1 stoichiometry for the binding of PPi and nucleotide polyphosphate anions to the bis(ZnII(TACN)) moiety of [Fc[BOND]bis{ZnII(TACN)(Py)}] and indicated that binding induces a trans to cis configuration rearrangement of the bis(ZnII(TACN)) complexes that is responsible for the enhancement of the pyrene excimer emission. Pyrophosphate was concluded to have the strongest affinity to [Fc[BOND]bis{ZnII(TACN)(Py)}] among the anions tested based on a six-fold fluorescence enhancement and 0.1 V negative shift in the potential of the ferrocene/ferrocenium couple. The binding constant for a variety of polyphosphate anions was determined from the change in the intensity of pyrene excimer emission with polyphosphate concentration, measured at 475 nm in CH3CN/Tris-HCl (1:9) buffer solution (10.0 mM, pH 7.4). These measurements confirmed that pyrophosphate binds more strongly (Kb=(4.45±0.41)×106 M−1) than the other nucleotide di- and triphosphates (Kb=1–50×105 M−1) tested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hybrid composite membranes have great potential for desalination applications since water transport can be favorably promoted by selective diffusion at the interface between matrix and reinforcement materials. In this paper, graphene oxide nano-sheets were successfully incorporated across 200nm thick poly(amide) films by interfacial polymerization to form novel thin-film composite membranes. The impact of the graphene oxide on the morphology, chemistry, and surface charge of the ultra-thin poly(amide) layer, and the ability to desalinate seawater was investigated. The graphene oxide nano-sheets were found to be well dispersed across the composite membranes, leading to a lower membrane surface energy and an enhanced hydrophilicity. The iso-electric point of the samples, key to surface charge repulsion during desalination, was found to be consistently shifted to higher pH values with an increasing graphene oxide content. Compared to a pristine poly(amide) membrane, the pure water flux across the composite membranes with 0.12wt.% of graphene oxide was also found to increase by up to 80% from 0.122 to 0.219L·μm·m-2·h-1·bar-1 without significantly affecting salt selectivity. Furthermore, the inhibitory effects of the composite membrane on microbial growth were evaluated and the novel composite membranes exhibited superior anti-microbial activity and may act as a potential anti-fouling membrane material.