952 resultados para PL emission
Resumo:
Petrography and isotope geochemical characteristics of H, O, S, Sr, and Nd have been described for basalts recovered from Hole 504B during Leg 111 of the Ocean Drilling Program. The petrographic and chemical features of the recovered basalts are similar to those obtained previously (DSDP Legs 69, 70, and 83); they can be divided into phyric (plagioclase-rich) and aphyric (Plagioclase- and clinopyroxene-rich) basalts and show low abundances of TiO2, Na2O, K2O, and Sr. This indicates that the basalts belong to Group D, comprising the majority of the upper section of the Hole 504B. The diopside-rich nature of the clinopyroxene phenocrysts and Ca-rich nature of the Plagioclase phenocrysts are also consistent with the preceding statement. The Sr and Nd isotope systematics (average 87Sr/86Sr = 0.70267 ± 0.00007 and average 143Nd/144Nd = 0.513157 ± 0.000041) indicate that the magma sources are isotopically heterogeneous, although the analyzed samples represent only the lowermost 200-m section of Hole 504B. The rocks were subjected to moderate hydrothermal alteration throughout the section recovered during Leg 111. Alteration is limited to interstices, microfractures, and grain boundaries of the primary minerals, forming chlorite, actinolite, talc, smectite, quartz, sphene, and pyrite. In harmony with the moderate alteration, the following alteration-sensitive parameters show rather limited ranges of variation: H2O = 1.1 ±0.2 wt%, dD = - 38 per mil ± 4 per mil, d180 = 5.4 per mil ± 0.3 per mil, total S = 562 ± 181 ppm, and d34S = 0.8 per mil ± 0.3 per mil. Based on these data, it was estimated that the hydrothermal fluids had dD and d180 values only slightly higher than those of seawater, the water/rock ratios were as low as 0.02-0.2, and the temperature of alteration was 300°-400°C. Sulfur exists predominantly as pyrite and in minor quantities as chalcopyrite. No primary monosulfide was detected. This and the d34S values of pyrite (d34S = 0.8 per mil) suggest that primary pyrrhotite was almost completely oxidized to pyrite by reaction with hydrothermal fluids containing very little sulfate.
Resumo:
Results of study of bottom sediments near Iceland and on the Jan Mayen Island are reported. It was found that in recent sediments chemical elements are mainly associated with pyro- and volcanoclastics. In some areas adjusted to deep-seated faults ancient iron-manganese crusts and sediments occur. They are rich in Ni, Co, V, Cu, Mo, Cd and other elements associated with endogenic matter.
Resumo:
Bromoform (CHBr3) is one important precursor of atmospheric reactive bromine species that are involved in ozone depletion in the troposphere and stratosphere. In the open ocean bromoform production is linked to phytoplankton that contains the enzyme bromoperoxidase. Coastal sources of bromoform are higher than open ocean sources. However, open ocean emissions are important because the transfer of tracers into higher altitude in the air, i.e. into the ozone layer, strongly depends on the location of emissions. For example, emissions in the tropics are more rapidly transported into the upper atmosphere than emissions from higher latitudes. Global spatio-temporal features of bromoform emissions are poorly constrained. Here, a global three-dimensional ocean biogeochemistry model (MPIOM-HAMOCC) is used to simulate bromoform cycling in the ocean and emissions into the atmosphere using recently published data of global atmospheric concentrations (Ziska et al., 2013) as upper boundary conditions. Our simulated surface concentrations of CHBr3 match the observations well. Simulated global annual emissions based on monthly mean model output are lower than previous estimates, including the estimate by Ziska et al. (2013), because the gas exchange reverses when less bromoform is produced in non-blooming seasons. This is the case for higher latitudes, i.e. the polar regions and northern North Atlantic. Further model experiments show that future model studies may need to distinguish different bromoform-producing phytoplankton species and reveal that the transport of CHBr3 from the coast considerably alters open ocean bromoform concentrations, in particular in the northern sub-polar and polar regions.
Resumo:
Geological features of some areas of the Tropical Atlantic (stratigraphy, tectonic structure, lithology, distribution of ore components in bottom sediments, petrography of bedrocks, etc.) are under consideration in the book. Regularities of concentration of trace elements in iron-manganese nodules, features of these nodules in bottom sediments, distribution of phosphorite nodules and other phosphorites have been studied. Much attention is paid to rocks of the ocean crust. A wide range of mineralization represented by magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals has been found.
Resumo:
Production pathways of the prominent volatile organic halogen compound methyl iodide (CH3I) are not fully understood. Based on observations, production of CH3I via photochemical degradation of organic material or via phytoplankton production has been proposed. Additional insights could not be gained from correlations between observed biological and environmental variables or from biogeochemical modeling to identify unambiguously the source of methyl iodide. In this study, we aim to address this question of source mechanisms with a three-dimensional global ocean general circulation model including biogeochemistry (MPIOM-HAMOCC (MPIOM - Max Planck Institute Ocean Model HAMOCC - HAMburg Ocean Carbon Cycle model)) by carrying out a series of sensitivity experiments. The simulated fields are compared with a newly available global data set. Simulated distribution patterns and emissions of CH3I differ largely for the two different production pathways. The evaluation of our model results with observations shows that, on the global scale, observed surface concentrations of CH3I can be best explained by the photochemical production pathway. Our results further emphasize that correlations between CH3I and abiotic or biotic factors do not necessarily provide meaningful insights concerning the source of origin. Overall, we find a net global annual CH3I air-sea flux that ranges between 70 and 260 Gg/yr. On the global scale, the ocean acts as a net source of methyl iodide for the atmosphere, though in some regions in boreal winter, fluxes are of the opposite direction (from the atmosphere to the ocean).
Resumo:
The book deals with results of complex geological and geophysical studies in the Doldrums and Arkhangelsky Fracture Zones of the Central Atlantic. Description of the main features of bottom relief, sediments and crustal structure, geomagnetic field, composition of igneous and sedimentary rocks are given in the book. The authors made conclusions on tectonic delamination of the oceanic crust and existence of specific rock complexes forming non-spreading blocks