997 resultados para PHENOTYPE VARIABILITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stratospheric climate and variability from simulations of sixteen chemistry‐climate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar temperature biases are less than 5 K except in the Southern Hemisphere (SH) lower stratosphere in spring. The accumulated area of low temperatures responsible for polar stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated for the Arctic. The shape and position of the polar vortex is well simulated, as is the tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency of major sudden stratospheric warnings (SSWs), late biases in the breakup of the SH vortex, and a weak annual cycle in the zonal wind in the tropical upper stratosphere. Quantitatively, “metrics” indicate a wide spread in model performance for most diagnostics with systematic biases in many, and poorer performance in the SH than in the Northern Hemisphere (NH). Correlations were found in the SH between errors in the final warming, polar temperatures, the leading mode of variability, and jet strength, and in the NH between errors in polar temperatures, frequency of major SSWs, and jet strength. Models with a stronger QBO have stronger tropical upwelling and a colder NH vortex. Both the qualitative and quantitative analysis indicate a number of common and long‐standing model problems, particularly related to the simulation of the SH and stratospheric variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare the variability of the Atlantic meridional overturning circulation (AMOC) as simulated by the coupled climate models of the RAPID project, which cover a wide range of resolution and complexity, and observed by the RAPID/MOCHA array at about 26N. We analyse variability on a range of timescales, from five-daily to interannual. In models of all resolutions there is substantial variability on timescales of a few days; in most AOGCMs the amplitude of the variability is of somewhat larger magnitude than that observed by the RAPID array, while the time-mean is within about 10% of the observational estimate. The amplitude of the simulated annual cycle is similar to observations, but the shape of the annual cycle shows a spread among the models. A dynamical decomposition shows that in the models, as in observations, the AMOC is predominantly geostrophic (driven by pressure and sea-level gradients), with both geostrophic and Ekman contributions to variability, the latter being exaggerated and the former underrepresented in models. Other ageostrophic terms, neglected in the observational estimate, are small but not negligible. The time-mean of the western boundary current near the latitude of the RAPID/MOCHA array has a much wider model spread than the AMOC does, indicating large differences among models in the simulation of the wind-driven gyre circulation, and its variability is unrealistically small in the models. In many RAPID models and in models of the Coupled Model Intercomparison Project Phase 3 (CMIP3), interannual variability of the maximum of the AMOC wherever it lies, which is a commonly used model index, is similar to interannual variability in the AMOC at 26N. Annual volume and heat transport timeseries at the same latitude are well-correlated within 15--45N, indicating the climatic importance of the AMOC. In the RAPID and CMIP3 models, we show that the AMOC is correlated over considerable distances in latitude, but not the whole extent of the north Atlantic; consequently interannual variability of the AMOC at 50N, where it is particularly relevant to European climate, is not well-correlated with that of the AMOC at 26N, where it is monitored by the RAPID/MOCHA array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consistency of precipitation variability estimated from the multiple satellite-based observing systems is assessed. There is generally good agreement between TRMM TMI, SSM/I, GPCP and AMSRE datasets for the inter-annual variability of precipitation since 1997 but the HOAPS dataset appears to overestimate the magnitude of variability. Over the tropical ocean the TRMM 3B42 dataset produces unrealistic variabilitys. Based upon deseasonalised GPCP data for the period 1998-2008, the sensitivity of global mean precipitation (P) to surface temperature (T) changes (dP/dT) is about 6%/K, although a smaller sensitivity of 3.6%/K is found using monthly GPCP data over the longer period 1989-2008. Over the tropical oceans dP/dT ranges from 10-30%/K depending upon time-period and dataset while over tropical land dP/dT is -8 to -11%/K for the 1998-2008 period. Analyzing the response of the tropical ocean precipitation intensity distribution to changes in T we find the wetter area P shows a strong positive response to T of around 20%/K. The response over the drier tropical regimes is less coherent and varies with datasets, but responses over the tropical land show significant negative relationships over an interannual time-scale. The spatial and temporal resolutions of the datasets strongly influence the precipitation responses over the tropical oceans and help explain some of the discrepancy between different datasets. Consistency between datasets is found to increase on averaging from daily to 5-day time-scales and considering a 1o (or coarser) spatial resolution. Defining the wet and dry tropical ocean regime by the 60th percentile of P intensity, the 5-day average, 1o TMI data exhibits a coherent drying of the dry regime at the rate of -20%/K and the wet regime becomes wetter at a similar rate with warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial variability of soil nitrogen (N) mineralisation has not been extensively studied, which limits our capacity to make N fertiliser recommendations. Even less attention has been paid to the scale-dependence of the variation. The objective of this research was to investigate the scale-dependence of variation of mineral N (MinN, N–NO3− plus N–NH4+) at within-field scales. The study was based on the spatial dependence of the labile fractions of SOM, the key fractions for N mineralisation. Soils were sampled in an unbalanced nested design in a 4-ha arable field to examine the distribution of the variation of SOM at 30, 10, 1, and 0.12 m. Organic matter in free and intra-aggregate light fractions (FLF and IALF) was extracted by physical fractionation. The variation occurred entirely within 0.12 m for FLF and at 10 m for IALF. A subsequent sampling on a 5-m grid was undertaken to link the status of the SOM fractions to MinN, which showed uncorrelated spatial dependence. A uniform application of N fertiliser would be suitable in this case. The failure of SOM fractions to identify any spatial dependence of MinN suggests that other soil variables, or crop indicators, should be tested to see if they can identify different N supply areas within the field for a more efficient and environmentally friendly N management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exponential spectra are found to characterize variability of the Northern Annular Mode (NAM) for periods less than 36 days. This corresponds to the observed rounding of the autocorrelation function at lags of a few days. The characteristic persistence timescales during winter and summer is found to be ∼5 days for these high frequencies. Beyond periods of 36 days the characteristic decorrelation timescale is ∼20 days during winter and ∼6 days in summer. We conclude that the NAM cannot be described by autoregressive models for high frequencies; the spectra are more consistent with low-order chaos. We also propose that the NAM exhibits regime behaviour, however the nature of this has yet to be identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, 40-yr ECMWF Re-Analysis (ERA-40) data are used for the description of the seasonal cycle and the interannual variability of the westerly jet in the Tibetan Plateau region. To complement results based on the analysis of monthly mean horizontal wind speeds, an occurrence-based jet climatology is constructed by identifying the locations of the jet axes at 6-hourly intervals throughout 1958–2001. Thus, a dataset describing the highly transient and localized features of jet variability is obtained. During winter and summer the westerly jet is located, respectively, to the south and north of the Tibetan Plateau. During the spring and autumn seasons there are jet transitions from south to north and vice versa. The median dates for these transitions are 28 April and 12 October. The spring transition is associated with large interannual variations, while the fall transition occurs more reliably within a 3-week period. The strength of the jet exhibits a peculiar seasonal cycle. During northward migration in April/May, the jet intensity weakens and its latitudinal position varies largely. In some springs, there are several transitions and split configurations occur before the jet settles in its northern summer position. In June, a well-defined and unusually strong jet reappears at the northern flanks of the Tibetan Plateau. In autumn, the jet gradually but reliably recedes to the south and is typically more intense than in spring. The jet transitions between the two preferred locations follow the seasonal latitudinal migration of the jet in the Northern Hemisphere. An analysis of interannual variations shows the statistical relationship between the strength of the summer jet, the tropospheric meridional temperature gradient, and the all-India rainfall series. Both this analysis and results from previous studies point to the particular dynamical relevance of the onsetting Indian summer monsoon precipitation and the associated diabatic heating for the formation of the strong summer jet. Finally, an example is provided that illustrates the climatological significance of the jet in terms of the covariation between the jet location and the spatial precipitation distribution in central Asia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in the Atlantic Meridional Overturning Circulation (MOC) exert an important influence on climate, particularly on decadal time scales. Simulation of the MOC in coupled climate models is compromised, to a degree that is unknown, by their lack of fidelity in resolving some of the key processes involved. There is an overarching need to increase the resolution and fidelity of climate models, but also to assess how increases in resolution influence the simulation of key phenomena such as the MOC. In this study we investigate the impact of significantly increasing the (ocean and atmosphere) resolution of a coupled climate model on the simulation of MOC variability by comparing high and low resolution versions of the same model. In both versions, decadal variability of the MOC is closely linked to density anomalies that propagate from the Labrador Sea southward along the deep western boundary. We demonstrate that the MOC adjustment proceeds more rapidly in the higher resolution model due the increased speed of western boundary waves. However, the response of the Atlantic Sea Surface Temperatures (SSTs) to MOC variations is relatively robust - in pattern if not in magnitude - across the two resolutions. The MOC also excites a coupled ocean-atmosphere response in the tropical Atlantic in both model versions. In the higher resolution model, but not the lower resolution model, there is evidence of a significant response in the extratropical atmosphere over the North Atlantic 6 years after a maximum in the MOC. In both models there is evidence of a weak negative feedback on deep density anomalies in the Labrador Sea, and hence on the MOC (with a time scale of approximately ten years). Our results highlight the need for further work to understand the decadal variability of the MOC and its simulation in climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starch-based thickening agents may be prescribed for patients with dysphagia. Thickened fluids alter variables of the swallow reflex, allowing more time for bolus manipulation without compromising airway closure. This investigation explored the variation in viscosity and physical characteristics of thickened drinks prepared in different media under laboratory conditions and compared the results with those of thickened drinks presented to dysphagic patients in one hospital. The rheological characteristics were tested on a simple plastometer and a Bohlin CVOR rheometer (Malvern Instruments, Worcestershire, UK). Samples prepared to “syrup” consistency both in the laboratory and in the hospitalwere significantly different from each other (P < 0.0001). This was also the case for samples prepared to “custard” consistency. Differences existed not only in viscosity, but drinks prepared in different media produced different rheological matrices. This signifies different viscoelastic behaviors that may effect manipulation in the mouth. From this study, preparation of thickened drinks using starch-based instant thickening powders appears to be a highly variable practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the classical Saltzman two-dimensional convection equations, we derive via a severe spectral truncation a minimal 10 ODE system which includes the thermal effect of viscous dissipation. Neglecting this process leads to a dynamical system which includes a decoupled generalized Lorenz system. The consideration of this process breaks an important symmetry and couples the dynamics of fast and slow variables, with the ensuing modifications to the structural properties of the attractor and of the spectral features. When the relevant nondimensional number (Eckert number Ec) is different from zero, an additional time scale of O(Ec−1) is introduced in the system, as shown with standard multiscale analysis and made clear by several numerical evidences. Moreover, the system is ergodic and hyperbolic, the slow variables feature long-term memory with 1/f3/2 power spectra, and the fast variables feature amplitude modulation. Increasing the strength of the thermal-viscous feedback has a stabilizing effect, as both the metric entropy and the Kaplan-Yorke attractor dimension decrease monotonically with Ec. The analyzed system features very rich dynamics: it overcomes some of the limitations of the Lorenz system and might have prototypical value in relevant processes in complex systems dynamics, such as the interaction between slow and fast variables, the presence of long-term memory, and the associated extreme value statistics. This analysis shows how neglecting the coupling of slow and fast variables only on the basis of scale analysis can be catastrophic. In fact, this leads to spurious invariances that affect essential dynamical properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale processes.