887 resultados para PEC, posta elettronica certificata, sicurezza, privacy, firma digitale, firma elettronica
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.
Resumo:
We propose a model, based on the work of Brock and Durlauf, which looks at how agents make choices between competing technologies, as a framework for exploring aspects of the economics of the adoption of privacy-enhancing technologies. In order to formulate a model of decision-making among choices of technologies by these agents, we consider the following: context, the setting in which and the purpose for which a given technology is used; requirement, the level of privacy that the technology must provide for an agent to be willing to use the technology in a given context; belief, an agent’s perception of the level of privacy provided by a given technology in a given context; and the relative value of privacy, how much an agent cares about privacy in this context and how willing an agent is to trade off privacy for other attributes. We introduce these concepts into the model, admitting heterogeneity among agents in order to capture variations in requirement, belief, and relative value in the population. We illustrate the model with two examples: the possible effects on the adoption of iOS devices being caused by the recent Apple–FBI case; and the recent revelations about the non-deletion of images on the adoption of Snapchat.