958 resultados para PARTITION
Resumo:
A method for the study of the control of the attainment of thermal acclimation has been applied to the crabs, Cancer pagurus and Carcinus maenas. Crabs were heterothermally acclimated by using an anterior–posterior partition between two compartments, one at 8°C and the other at 22°C. One compartment held a three-quarter section of the crab including the central nervous system (CNS), eye stalks, and ipsilateral legs; the other held a quarter section including the contralateral legs. Criteria used to assess the acclimation responses were comparisons of muscle plasma membrane fatty acid composition and “fluidity.” In both species, the major fatty acids of phosphatidylcholine were 16:0, 18:1, 20:5, and 22:6, whereas phosphatidylethanolamine contained significantly less 16:0 but more 18:0; these fatty acids comprised 80% of the total. Differences in fatty acid composition were demonstrated between fractions obtained from the ipsilateral and contralateral legs from the same heterothermally acclimated individual. In all acclimation states (except 22CNS, phosphatidylcholine fraction), membrane lipid saturation was significantly increased with acclimation at 22° as compared with 8°C. Membrane fluidity was determined by using 1,3-diphenyl-1,3,5 hexatriene (DPH) fluorescence polarization. In both species, membranes from legs held at 8° were more fluid than from legs held at 22°C irrespective of the acclimation temperature of the CNS. Heterothermal acclimation demonstrated that leg muscle membrane composition and fluidity respond primarily to local temperature and were not predominately under central direction. The responses between 8°C- and 22°C-acclimated legs were more pronounced when the CNS was cold-acclimated, so a central influence cannot be excluded.
Resumo:
We designed a host–guest fusion peptide system, which is completely soluble in water and has a high affinity for biological and lipid model membranes. The guest sequences are those of the fusion peptides of influenza hemagglutinin, which are solubilized by a highly charged unstructured C-terminal host sequence. These peptides partition to the surface of negatively charged liposomes or erythrocytes and elicit membrane fusion or hemolysis. They undergo a conformational change from random coil to an obliquely inserted (≈33° from the surface) α-helix on binding to model membranes. Partition coefficients for membrane insertion were measured for influenza fusion peptides of increasing lengths (n = 8, 13, 16, and 20). The hydrophobic contribution to the free energy of binding of the 20-residue fusion peptide at pH 5.0 is −7.6 kcal/mol (1 cal = 4.18 J). This energy is sufficient to stabilize a “stalk” intermediate if a typical number of fusion peptides assemble at the site of membrane fusion. The fusion activity of the fusion peptides increases with each increment in length, and this increase strictly correlates with the hydrophobic binding energy and the angle of insertion.
Resumo:
A fluorinated detergent, CF3(CF2)5C2H4-O-maltose, was reconstituted into a lipid bilayer model membrane system to demonstrate the feasibility of determining solvent accessibility and membrane immersion depth of each fluorinated group by 19F NMR. Apolar oxygen, which is known to partition with an increasing concentration gradient toward the hydrophobic membrane interior, exhibits a range of paramagnetic relaxation effects on 19F nuclei, depending on its depth in the membrane. This effect, which is predominately associated with spin-lattice relaxation rates (R1) and chemical shifts, can be amplified greatly with minimal line broadening by increasing the partial pressure of O2 at least 100-fold (i.e., PO2 greater than 20 bar). The differences of longitudinal relaxation rates at 20 bar of oxygen pressure to those under ambient pressure (R120bar − R10) are largest for those fluorine groups expected to be most deeply buried in the membrane bilayer. This result contrasts with the reverse trend, which is observed on addition of a membrane surface-associated paramagnetic species, 4-(N,N-dimethyl-N-hexadecyl) ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl iodide (CAT-16) at ambient pressures. Thus, differential relaxation rates may be observed in 19F-labeled membrane-associated molecules resulting from the addition of apolar oxygen under high pressure. The results demonstrate that the degree of solvent accessibility and membrane immersion depth of specific fluorinated species in membrane-associated macromolecules can be probed by 19F NMR.
Resumo:
Select lipid-anchored proteins such as glycosylphosphatidylinositol (GPI)-anchored proteins and nonreceptor tyrosine kinases may preferentially partition into sphingomyelin-rich and cholesterol-rich plasmalemmal microdomains, thereby acquiring resistance to detergent extraction. Two such domains, caveolae and lipid rafts, are morphologically and biochemically distinct, contain many signaling molecules, and may function in compartmentalizing cell surface signaling. Subfractionation and confocal immunofluorescence microscopy reveal that, in lung tissue and in cultured endothelial and epithelial cells, heterotrimeric G proteins (Gi, Gq, Gs, and Gβγ) target discrete cell surface microdomains. Gq specifically concentrates in caveolae, whereas Gi and Gs concentrate much more in lipid rafts marked by GPI-anchored proteins (5′ nucleotidase and folate receptor). Gq, apparently without Gβγ subunits, stably associates with plasmalemmal and cytosolic caveolin. Gi and Gs interact with Gβγ subunits but not caveolin. Gi and Gs, unlike Gq, readily move out of caveolae. Thus, caveolin may function as a scaffold to trap, concentrate, and stabilize Gq preferentially within caveolae over lipid rafts. In N2a cells lacking caveolae and caveolin, Gq, Gi, and Gs all concentrate in lipid rafts as a complex with Gβγ. Without effective physiological interaction with caveolin, G proteins tend by default to segregate in lipid rafts. The ramifications of the segregated microdomain distribution and the Gq-caveolin complex without Gβγ for trafficking, signaling, and mechanotransduction are discussed.
Resumo:
An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (<20 μM). In this study, we present evidence for a consumption of NO in mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.
Resumo:
Previously we proposed that endogenous amphiphilic substances may partition from the aqueous cytoplasm into the lipid phase during dehydration of desiccation-tolerant organ(ism)s and vice versa during rehydration. Their perturbing presence in membranes could thus explain the transient leakage from imbibing organisms. To study the mechanism of this phenomenon, amphiphilic nitroxide spin probes were introduced into the pollen of a model organism, Typha latifolia, and their partitioning behavior during dehydration and rehydration was analyzed by electron paramagnetic resonance spectroscopy. In hydrated pollen the spin probes mainly occurred in the aqueous phase; during dehydration, however, the amphiphilic spin probes partitioned into the lipid phase and had disappeared from the aqueous phase below 0.4 g water g−1 dry weight. During rehydration the probes reappeared in the aqueous phase above 0.4 g water g−1 dry weight. The partitioning back into the cytoplasm coincided with the decrease of the initially high plasma membrane permeability. A charged polar spin probe was trapped in the cytoplasm during drying. Liposome experiments showed that partitioning of an amphiphilic spin probe into the bilayer during dehydration caused transient leakage during rehydration. This was also observed with endogenous amphipaths that were extracted from pollen, implying similar partitioning behavior. In view of the fluidizing effect on membranes and the antioxidant properties of many endogenous amphipaths, we suggest that partitioning with drying may be pivotal to desiccation tolerance, despite the risk of imbibitional leakage.
Resumo:
The tectorial membrane has long been postulated as playing a role in the exquisite sensitivity of the cochlea. In particular, it has been proposed that the tectorial membrane provides a second resonant system, in addition to that of the basilar membrane, which contributes to the amplification of the motion of the cochlear partition. Until now, technical difficulties had prevented vibration measurements of the tectorial membrane and, therefore, precluded direct evidence of a mechanical resonance. In the study reported here, the vibration of the tectorial membrane was measured in two orthogonal directions by using a novel method of combining laser interferometry with a photodiode technique. It is shown experimentally that the motion of the tectorial membrane is resonant at a frequency of 0.5 octave (oct) below the resonant frequency of the basilar membrane and polarized parallel to the reticular lamina. It is concluded that the resonant motion of the tectorial membrane is due to a parallel resonance between the mass of the tectorial membrane and the compliance of the stereocilia of the outer hair cells. Moreover, in combination with the contractile force of outer hair cells, it is proposed that inertial motion of the tectorial membrane provides the necessary conditions to allow positive feedback of mechanical energy into the cochlear partition, thereby amplifying and tuning the cochlear response.
Resumo:
Dopamine (DA) deficiency has been implicated in Lesch-Nyhan disease (LND), a genetic disorder that is characterized by hyperuricemia, choreoathetosis, dystonia, and compulsive self-injury. To establish that DA deficiency is present in LND, the ligand WIN-35,428, which binds to DA transporters, was used to estimate the density of DA-containing neurons in the caudate and putamen of six patients with classic LND. Comparisons were made with 10 control subjects and 3 patients with Rett syndrome. Three methods were used to quantify the binding of the DA transporter so that its density could be estimated by a single dynamic positron emission tomography study. These approaches included the caudate- or putamen-to-cerebellum ratio of ligand at 80-90 min postinjection, kinetic analysis of the binding potential [Bmax/(Kd x Vd)] using the assumption of equal partition coefficients in the striatum and the cerebellum, and graphical analysis of the binding potential. Depending on the method of analysis, a 50-63% reduction of the binding to DA transporters in the caudate, and a 64-75% reduction in the putamen of the LND patients was observed compared to the normal control group. When LND patients were compared to Rett syndrome patients, similar reductions were found in the caudate (53-61%) and putamen (67-72%) in LND patients. Transporter binding in Rett syndrome patients was not significantly different from the normal controls. Finally, volumetric magnetic resonance imaging studies detected a 30% reduction in the caudate volume of LND patients. To ensure that a reduction in the caudate volume would not confound the results, a rigorous partial volume correction of the caudate time activity curve was performed. This correction resulted in an even greater decrease in the caudate-cerebellar ratio in LND patients when contrasted to controls. To our knowledge, these findings provide the first in vivo documentation of a dopaminergic reduction in LND and illustrate the role of positron emission tomography imaging in investigating neurodevelopmental disorders.
Resumo:
A new approach to the analysis of metabolic pathways involving poorly water-soluble intermediates is proposed. It relies upon the ability of the hydrophobic intermediates formed by a sequence of intracellular reactions to cross the membrane(s) and partition between aqueous and organic phases, when cells are incubated in the presence of a nonpolar and nontoxic organic solvent. As a result of this thermodynamically driven efflux of the formed intermediates from the cell, they accumulate in the organic medium in sufficient quantities for GC-MS analysis and identification. This enables direct determination of the sequence of chemical reactions involved with no requirement for the isolation of each individual metabolite from a cell-free extract. The feasibility of the proposed methodology has been demonstrated by the elucidation of the biosynthesis of (R)-gamma-decalactone from (R)-ricinoleic acid catalyzed by the yeast Sporidiobolus ruinenii grown in the presence of decane. The corresponding 4-hydroxy-acid intermediates, formed in the course of beta-oxidation of (R)-ricinoleic acid, were simultaneously observed in a single experiment on the same chromatogram. Potential applications of this proposed methodology are briefly discussed.
Resumo:
Multiscale asymptotic methods developed previously to study macromechanical wave propagation in cochlear models are generalized here to include active control of a cochlear partition having three subpartitions, the basilar membrane, the reticular lamina, and the tectorial membrane. Activation of outer hair cells by stereocilia displacement and/or by lateral wall stretching result in a frequency-dependent force acting between the reticular lamina and basilar membrane. Wavelength-dependent fluid loads are estimated by using the unsteady Stokes' equations, except in the narrow gap between the tectorial membrane and reticular lamina, where lubrication theory is appropriate. The local wavenumber and subpartition amplitude ratios are determined from the zeroth order equations of motion. A solvability relation for the first order equations of motion determines the subpartition amplitudes. The main findings are as follows: The reticular lamina and tectorial membrane move in unison with essentially no squeezing of the gap; an active force level consistent with measurements on isolated outer hair cells can provide a 35-dB amplification and sharpening of subpartition waveforms by delaying dissipation and allowing a greater structural resonance to occur before the wave is cut off; however, previously postulated activity mechanisms for single partition models cannot achieve sharp enough tuning in subpartitioned models.
Resumo:
During meiosis in Saccharomyces cerevisiae, the first chemical step in homologous recombination is the occurrence of site-specific DNA double-strand breaks (DSBs). In wild-type cells, these breaks undergo resection of their 5' strand termini to yield molecules with 3' single-stranded tails. We have further characterized the breaks that accumulate in rad50S mutant stains defective in DSB resection. We find that these DSBs are tightly associated with protein via what appears to be a covalent linkage. When genomic DNA is prepared from meiotic rad50S cultures without protease treatment steps, the restriction fragments diagnostic of DSBs selectively partition to the organic-aqueous interphase in phenol extractions and band at lower than normal density in CsCl density gradients. Selective partitioning and decreased buoyant density are abolished if the DNA is treated with proteinase K prior to analysis. Similar results are obtained with sae2-1 mutant strains, which have phenotypes identical to rad50S mutants. The protein is bound specifically to the 5' strand termini of DSBs and is present at both 5' ends in at least a fraction of breaks. The stability of the complex to various protein denaturants and the strand specificity of the attachment are most consistent with a covalent linkage to DSB termini. We propose that the DSB-associated protein is the catalytic subunit of the meiotic recombination initiation nuclease and that it cleaves DNA via a covalent protein-DNA intermediate.
Resumo:
Geographical patterns of mtDNA variation were studied in 12 Italian samples (1072 individuals) by two different spatial autocorrelation methods. Separate analyses of the frequencies of 12 restriction morphs show North-South clines, differences between Sardinia and the mainland populations, and the effects of isolation by distance. A recently developed autocorrelation statistic summarizing molecular similarity at all sites (AIDA; autocorrelation index for DNA analysis) confirms the presence of a clinical pattern; differences between random pairs of haplotypes tend to increase with their geographical distance. The partition of gene diversity, however, reveals that most variability occurs within populations, whereas differences between populations are minor (GST = 0.057). When the data from the 12 samples are pooled, two descriptors of genetic variability (number of polymorphic sites and average sequence difference between pairs of individuals) do not behave as expected under neutrality. The presence of clinal patterns, Tajima's tests, and a simulation experiment agree in suggesting that population sizes increased rapidly in Italy and Sicily but not necessarily so in Sardinia. The distribution of pairwise sequence differences in the Italian peninsula (excluding Sardinia) permits a tentative location of the demographic increase between 8000 and 20,500 years ago. These dates are consistent with archaeological estimates of two distinct expansion processes, occurring, respectively, in the Neolithic and after the last glacial maximum in the Paleolithic. Conversely, there is no genetic evidence that such processes have had a major impact on the Sardinian population.
Resumo:
We present an analysis that synthesizes information on the sequence, structure, and motifs of antigenic peptides, which previously appeared to be in conflict. Fourier analysis of T-cell antigenic peptides indicates a periodic variation in amino acid polarities of 3-3.6 residues per period, suggesting an amphipathic alpha-helical structure. However, the diffraction patterns of major histocompatibility complex (MHC) molecules indicate that their ligands are in an extended non-alpha-helical conformation. We present two mutually consistent structural explanations for the source of the alpha-helical periodicity, based on an observation that the side chains of MHC-bound peptides generally partition with hydrophobic (hydrophilic) side chains pointing into (out of) the cleft. First, an analysis of haplotype-dependent peptide motifs indicates that the locations of their defining residues tend to force a period 3-4 variation in hydrophobicity along the peptide sequence, in a manner consistent with the spacing of pockets in the MHC. Second, recent crystallographic determination of the structure of a peptide bound to a class II MHC molecule reveals an extended but regularly twisted peptide with a rotation angle of about 130 degrees. We show that similar structures with rotation angles of 100-130 degrees are energetically acceptable and also span the length of the MHC cleft. These results provide a sound physical chemical and structural basis for the existence of a haplotype-independent antigenic motif which can be particularly important in limiting the search time for antigenic peptides.
Resumo:
One of the main challenges of fuzzy community detection problems is to be able to measure the quality of a fuzzy partition. In this paper, we present an alternative way of measuring the quality of a fuzzy community detection output based on n-dimensional grouping and overlap functions. Moreover, the proposed modularity measure generalizes the classical Girvan–Newman (GN) modularity for crisp community detection problems and also for crisp overlapping community detection problems. Therefore, it can be used to compare partitions of different nature (i.e. those composed of classical, overlapping and fuzzy communities). Particularly, as is usually done with the GN modularity, the proposed measure may be used to identify the optimal number of communities to be obtained by any network clustering algorithm in a given network. We illustrate this usage by adapting in this way a well-known algorithm for fuzzy community detection problems, extending it to also deal with overlapping community detection problems and produce a ranking of the overlapping nodes. Some computational experiments show the feasibility of the proposed approach to modularity measures through n-dimensional overlap and grouping functions.
Resumo:
O trabalho trata do projeto e do desenvolvimento de um processador de baixo consumo de potência, de forma simplificada, explorando técnicas de microarquitetura, para atingir menor consumo de potência. É apresentada uma sequência lógica de desenvolvimento, a partir de conceitos e estruturas básicas, até chegar a estruturas mais complexas e, por fim, mostrar a microarquitetura completa do processador. Esse novo modelo de processador é comparado com estudos prévios de três processadores, sendo o primeiro modelo síncrono, o segundo assíncrono e o terceiro uma versão melhorada do primeiro modelo, que inclui minimizações de registradores e circuitos. Uma nova metodologia de criação de padring de microcontroladores, baseada em reuso de informações de projetos anteriores, é apresentada. Essa nova metodologia foi criada para a rápida prototipagem e para diminuir possíveis erros na geração do código do padring. Comparações de resultados de consumo de potência e área são apresentadas para o processador desenvolvido e resultados obtidos com a nova metodologia de geração de padring também são apresentados. Para o processador, um modelo, no qual se utilizam múltiplos barramentos para minimizar o número de ciclos de máquina por instrução, é apresentado. Também foram ressaltadas estruturas que podem ser otimizadas e circuitos que podem ser reaproveitados para diminuir a quantidade de circuito necessário na implementação. Por fim, a nova implementação é comparada com os três modelos anteriores; os ganhos obtidos de desempenho com a implementação dessas estruturas foram de 18% que, convertidos em consumo de potência, representam economia de 13% em relação ao melhor caso dos processadores comparados. A tecnologia utilizada no desenvolvimento dos processadores foi CMOS 250nm da TSMC.