999 resultados para Over-indebtedness
Resumo:
This article considers ideas about the suitability of experimental, non-naturalist, narrative forms in theatre and television, through the example of a 1965 BBC2 adaptation of J. B. Priestley's 1939 play Johnson over Jordan. Using both textual analysis of the programme and research into the BBC production documentation, this essay explains how the circumstances and conditions of 1960s television adaptation and the star casting of Sir Ralph Richardson transformed Priestley's stage play. The TV adaptation achieved cosmic effects on an intimate scale, through inference and the imaginative integration of the studio space with dubbed sound.
Resumo:
Abstract This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Resumo:
Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.
Intercomparison of water and energy budgets simulated by regional climate models applied over Europe
Resumo:
With many operational centers moving toward order 1-km-gridlength models for routine weather forecasting, this paper presents a systematic investigation of the properties of high-resolution versions of the Met Office Unified Model for short-range forecasting of convective rainfall events. The authors describe a suite of configurations of the Met Office Unified Model running with grid lengths of 12, 4, and 1 km and analyze results from these models for a number of convective cases from the summers of 2003, 2004, and 2005. The analysis includes subjective evaluation of the rainfall fields and comparisons of rainfall amounts, initiation, cell statistics, and a scale-selective verification technique. It is shown that the 4- and 1-km-gridlength models often give more realistic-looking precipitation fields because convection is represented explicitly rather than parameterized. However, the 4-km model representation suffers from large convective cells and delayed initiation because the grid length is too long to correctly reproduce the convection explicitly. These problems are not as evident in the 1-km model, although it does suffer from too numerous small cells in some situations. Both the 4- and 1-km models suffer from poor representation at the start of the forecast in the period when the high-resolution detail is spinning up from the lower-resolution (12 km) starting data used. A scale-selective precipitation verification technique implies that for later times in the forecasts (after the spinup period) the 1-km model performs better than the 12- and 4-km models for lower rainfall thresholds. For higher thresholds the 4-km model scores almost as well as the 1-km model, and both do better than the 12-km model.
Resumo:
Results from aircraft and surface observations provided evidence for the existence of mesoscale circulations over the Boreal Ecosystem-Atmosphere Study (BOREAS) domain. Using an integrated approach that included the use of analytical modeling, numerical modeling, and data analysis, we have found that there are substantial contributions to the total budgets of heat over the BOREAS domain generated by mesoscale circulations. This effect is largest when the synoptic flow is relatively weak, yet it is present under less favorable conditions, as shown by the case study presented here. While further analysis is warranted to document this effect, the existence of mesoscale flow is not surprising, since it is related to the presence of landscape patches, including lakes, which are of a size on the order of the local Rossby radius and which have spatial differences in maximum sensible heat flux of about 300 W m−2. We have also analyzed the vertical temperature profile simulated in our case study as well as high-resolution soundings and we have found vertical profiles of temperature change above the boundary layer height, which we attribute in part to mesoscale contributions. Our conclusion is that in regions with organized landscapes, such as BOREAS, even with relatively strong synoptic winds, dynamical scaling criteria should be used to assess whether mesoscale effects should be parameterized or explicitly resolved in numerical models of the atmosphere.
Resumo:
The use of a high resolution atmospheric model at T106 resolution, for studying the influence of greenhouse warming on tropical storm climatology, is investigated. The same method for identifying the storms has been used as in a previous study by Bengtsson et al. The sea surface temperature anomalies have been taken from a previous transient climate change experiment, obtained with a low resolution ocean-atmosphere coupled model. The global distribution of the storms, at the time when the CO2 concentration in the atmosphere had doubled, agrees in geographical position and seasonal variability with that of the present climate, but the number of storms is significantly reduced, particularly at the Southern Hemisphere. The main reason to this, appear to be connected to changes in the large scale circulation, such as a weaker Hadley circulation and stronger upper air westerlies. The low level vorticity in the hurricane genesis regions is generally reduced compared to the present climate, while the vertical tropospheric wind shear is somewhat increased. Most tropical storm regions indicate reduced surface windspeeds and a slightly weaker hydrological cycle.
Resumo:
The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from 14 chemistry‐climate models, driven by prescribed levels of halogens and greenhouse gases. There is general agreement among the models that total column ozone reached a minimum around year 2000 at all latitudes, projected to be followed by an increase over the first half of the 21st century. In the second half of the 21st century, ozone is projected to continue increasing, level off, or even decrease depending on the latitude. Separation into partial columns above and below 20 hPa reveals that these latitudinal differences are almost completely caused by differences in the model projections of ozone in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and is projected to return to 1960 levels well before the end of the century, although there is a spread among models in the dates that ozone returns to specific historical values. We find decreasing halogens and declining upper atmospheric temperatures, driven by increasing greenhouse gases, contribute almost equally to increases in upper stratospheric ozone. In the tropical lower stratosphere, an increase in upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in most of the models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century, returning to 1960 levels well before the end of the century in most models.
Resumo:
The statistical relationship between springtime and summertime ozone over middle and polar latitudes is analyzed using zonally averaged total ozone data. Shortterm variations in springtime midlatitude ozone demonstrate only a modest correlation with springtime polar ozone variations. However by early summer, ozone variations throughout the extratropics are highly correlated. Analysis of correlation functions indicates that springtime midlatitude ozone, not polar ozone, is the best predictor for summertime polar ozone. Long-term total ozone trends at middle and high latitudes are also different for spring and nearly identical for summer. About 39% of the observed southern midlatitude ozone decline in December can be attributed to the polar ozone depletion up to November. In the Northern Hemisphere, the corresponding contribution is about 15%, but the error bars are too large to make an accurate estimate.
Resumo:
A climatology of the late summer stratospheric zonal wind turnaround phenomenon is presented, with a particular focus on the behaviour over the Meteorological Service of Canada’s balloon-launching site at Vanscoy, Saskatchewan (52°N, 107°W). Turnaround refers to the change in sign of the zonal wind velocity and occurs twice each year at stratospheric mid-latitudes, in early spring and in late summer. The late summer turnaround is of particular interest to the high-altitude ballooning community because it offers the ideal conditions for launch, but it is also an interesting dynamical phenomenon in its own right. It is studied here using both the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and the United Kingdom Meteorological Office (MetO) analysis products as well as climate simulation data from the Canadian Middle Atmosphere Model (CMAM). The phenomenon and its interannual variability are documented. The predictability of the late summer turnaround over Vanscoy is investigated using both statistical averages and autocorrelation analysis. From the statistical averages, it is found that during every year since 1993, the period from 26 August to 5 September has contained appropriate launch dates. From the autocorrelation analysis, it is found that stratospheric zonal wind anomalies can persist for a month or more during most of the summer, but there is a predictability horizon at the end of the summer — just before turnaround