941 resultados para Origin of Species
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Firefly luciferases are called pH-sensitive because their bioluminescence spectra display a typical red-shift at acidic pH, higher temperatures, and in the presence of heavy metal cations, whereas other beetle luciferases (click beetles and railroadworms) do not, and for this reason they are called pH-insensitive. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. This subject is revised in view of recent results. Some substitutions of amino-acid residues influencing pH-sensitivity in firefly luciferases have been identified. Sequence comparison, site-directed mutagenesis and modeling studies have shown a set of residues differing between pH-sensitive and pH-insensitive luciferases which affect bioluminescence colors. Some substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). A network of hydrogen bonds and salt bridges involving the residues N229-S284-E311-R337 was found to be important for affecting bioluminescence colors. It is suggested that these structural elements may affect the benzothiazolyl side of the luciferin-binding site affecting bioluminescence colors. Experimental evidence suggest that the residual red light emission in pH-sensitive luciferases could be a vestige that may have biological importance in some firefly species. Furthermore, the potential utility of pH-sensitivity for intracellular biosensing applications is considered. © The Royal Society of Chemistry and Owner Societies.
Resumo:
Background: The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family.Results: W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes.Conclusions: Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here. © 2013 Parise-Maltempi et al.; licensee BioMed Central Ltd.
Resumo:
Hebanthe eriantha (Poir.) Pedersen, a climbing species of the Amaranthaceae increases in stem thickness by forming successive cambia. The family is dominated by herbaceous species and is constantly under discussion due to its disputed nature of the meristem. In the young stem small alternate segments of vascular cambium cease to divide and new arc of cambium initiates outside to it. The newly formed arcs connect with pre-existing alternate segments of cambium to complete the ring. On the contrary, in thick stems, instead of small segments, complete ring of cambium is replaced by new one. These new alternate segments/cambia originate from the parenchyma cells located outside to the phloem produced by previous cambium. Cambium is storied and exclusively composed of fusiform initials while ray cells remain absent at least in the early part of the secondary growth. However, large heterocellular rays are observed in 15-mm diameter stems but their frequency is much lower. In some of the rays, ray cells become meristematic and differentiate into radially arranged xylem and phloem elements. In fully grown plants, stems are composed of several successive rings of secondary xylem alternating with secondary phloem. Secondary xylem is diffuse-porous and composed of vessels, fibres, axial parenchyma while exceptionally large rays are observed only in the outermost regions of thick stems. Vessel diameter increases progressively from the centre towards the periphery of stems. Although the origin of successive cambia and composition of secondary xylem of H. eriantha remains similar to other herbaceous members of Amaranthaceae, the occurrence of relatively wider and thick-walled vessels and large rays in fully grown plants is characteristic to climbing habit. © 2013 Springer-Verlag Wien.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nestmate recognition is fundamental for the maintenance of social organization in insect nests. It is becoming well recognized that cuticle hydrocarbons mediate the recognition process, although the origin of recognition cues in stingless bees remains poorly explored. The present study investigates the effects of endogenously-produced and environmentally-acquired components in cuticular hydrocarbons in stingless bees. The tests are conducted using colonies of Plebeia droryana Friese and Plebeia remota Holmberg. Recognition tests are performed with four different groups: conspecific nestmates, conspecific non-nestmates, heterospecifics and conspecific, genetically-related individuals that emerge in a heterospecific nest. This last group is produced by introducing brood cells of P. droryana into a P. remota colony, and the resulting adult bees are tested for acceptance 10 days after emergence. For all groups, 15 individuals are sampled for chemical analysis. The results show the acceptance of all conspecific nestmates, and the rejection of almost every conspecific non-nestmate and every heterospecific bee. Genetically-related individuals emerging from heterospecific nests present intermediate rejection (66.7% rejection). Chemical analysis shows that P. droryana individuals emerging in a P. remota nest have small amounts of alkene and diene isomers found in P. remota cuticle that are not found in workers from the natal nest. The data clearly show that the majority of the compounds present in P. droryana cuticle are endogenously produced, although a few unsaturated compounds are acquired from the environment, increasing the chemical differences and, consequently, the rejection percentages.
Resumo:
With the discovery that DNA can be successfully recovered from museum collections, a new source of genetic information has been provided to extend our comprehension of the evolutionary history of species. However, historical specimens are often mislabeled or report incorrect information of origin, thus accurate identification of specimens is essential. Due to the highly damaged nature of ancient DNA many pitfalls exist and particular precautions need to be considered in order to perform genetic analysis. In this study we analyze 208 historical remains of pelagic fishes collected in the beginning of the 20th century. Through the adaptation of existing protocols, usually applied to human remains, we manage to successfully retrieve valuable genetic material from almost all of the examined samples using a guanidine and silica column-based approach. The combined use of two mitochondrial markers cytochrome-oxidase-1(mtDNA COI) and Control Region (mtDNA CR), and the nuclear marker first internal transcriber space (ITS1) allowed us to identify the majority of the examined specimens using traditional PCR and Sanger sequencing techniques. The creation of primers capable of amplifying heavily degraded DNA have great potential for future uses, both in ancient and in modern investigation. The methodologies developed in this study can in fact be applied for other ancient fish specimens as well as cooked or canned samples.
Resumo:
This study focused on the role of oceanographic discontinuities and the presence of transitional areas in shaping the population structure and the phylogeography of the Raja miraletus species complex, coupled with the test of the effective occurrence of past speciation events. The comparisons between the Atlantic African and the North-Eastern Atlantic-Mediterranean geographic populations were unravelled using both Cytochrome Oxidase I and eight microsatellite loci. This approach guaranteed a robust dataset for the identification of a speciation event between the Atlantic African clade, corresponding to the ex Raja ocellifera nominal species, and the NE Atlantic-Mediterranean R. miraletus clade. As a matter of fact, the origin of the Atlantic Africa and the NE Atlantic-Mediterranean deep split dated about 11.74MYA and was likely due to the synergic influence currents and two upwelling areas crossing the Western African Waters. Within the Mediterranean Sea, particular attention was also paid to the transitional area represented by Adventura and Maltese Bank, that might have contributed in sustaining the connectivity of the Western and the Eastern Mediterranean geographical populations. Furthermore, the geology of the easternmost part of Sicily and the geo-morphological depression of the Calabrian Arc could have driven the differentiation of the Eastern Mediterranean Sea. Although bathymetric and oceanographic discontinuity could represent barriers to dispersal and migration between Eastern and Western Mediterranean samples, a clear and complete genetic separation among them was not detected. Results produced by this work identified a speciation event defining Raja ocellifera and R. miraletus as two different species, and describing the R. miraletus species complex as the most ancient cryptic speciation event in the family Rajidae, representing another example of how strictly connected the environment, the behavioural habits and the evolutionary and ecologic drivers are.
Resumo:
Fourteen arsenolipids, including 11 new compounds, were identified and quantified in two species of brown algae, Wakame (Undaria pinnatifida) and Hijiki (Hizikia fusiformis), by high resolution mass spectrometry, high performance liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry. Both algal species contained arsenosugar-phospholipids as the major type of arsenolipid, and arsenic-hydrocarbons were also significant components, particularly in Hijiki. The origin of the various arsenolipids, and the possible significance of their relative quantities, is briefly discussed.
Resumo:
Species of Fusarium were isolated from water samples collected from the Andarax River and coastal sea water of the Mediterranean in Granada and Almería provinces of southeastern Spain. In total, 18 water samples were analyzed from the Andarax River, and 10 species of Fusarium were isolated: Fusarium anthophilum, F. acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum, F. solani, and F. solani. When considering the samples by their origins, 77.8% of the river water samples yielded at least one species of Fusarium , with F. oxysporum comprising 72.2% of the total isolates. In the case of marine water, 45.5% of the samples yielded at least one species of Fusarium, with F. solani comprising 36.3% of the total isolates. The pathogenicity of 41 isolates representing nine of the species collected from river an sea water during the study ws evluated on barley, kohlrabe, melon, and tomato. Inoculation with F. acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum F. solani, and F. sambucinum resulted in pre-and post-emergence damping off. Pathogenicity of Fusarium isolates did not seem to be related to the origin of the isolates (sea water or fresh water). However, the presence of pathogenic species of Fusarium in river water flowing to the sea could indicate long-distance dispersal in natural water environments
Resumo:
Radiolarian-based paleoceanographic reconstructions generally use the abundance of selected radiolarian species. However, the recent focus on the opal flux and the development of isotope measurements in biogenic opal and the organic matter embedded in it demands a better knowledge of the origin of the opal. We present here an estimation of the opal content of the skeleton of 63 radiolarian species from two sites in the Southern Ocean. The skeletons are modelled as associations of simple geometrical shapes, and the volume thus obtained is combined with opal density to obtain the amount of opal. These data are, thus, used to determine the most important opal carriers in the radiolarian assemblage in both cores.